Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Cancer Immunol Res ; 8(3): 396-408, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31871119

RESUMO

Computational prediction of binding between neoantigen peptides and major histocompatibility complex (MHC) proteins can be used to predict patient response to cancer immunotherapy. Current neoantigen predictors focus on in silico estimation of MHC binding affinity and are limited by low predictive value for actual peptide presentation, inadequate support for rare MHC alleles, and poor scalability to high-throughput data sets. To address these limitations, we developed MHCnuggets, a deep neural network method that predicts peptide-MHC binding. MHCnuggets can predict binding for common or rare alleles of MHC class I or II with a single neural network architecture. Using a long short-term memory network (LSTM), MHCnuggets accepts peptides of variable length and is faster than other methods. When compared with methods that integrate binding affinity and MHC-bound peptide (HLAp) data from mass spectrometry, MHCnuggets yields a 4-fold increase in positive predictive value on independent HLAp data. We applied MHCnuggets to 26 cancer types in The Cancer Genome Atlas, processing 26.3 million allele-peptide comparisons in under 2.3 hours, yielding 101,326 unique predicted immunogenic missense mutations (IMM). Predicted IMM hotspots occurred in 38 genes, including 24 driver genes. Predicted IMM load was significantly associated with increased immune cell infiltration (P < 2 × 10-16), including CD8+ T cells. Only 0.16% of predicted IMMs were observed in more than 2 patients, with 61.7% of these derived from driver mutations. Thus, we describe a method for neoantigen prediction and its performance characteristics and demonstrate its utility in data sets representing multiple human cancers.


Assuntos
Antígenos de Neoplasias/imunologia , Vacinas Anticâncer/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Neoplasias/imunologia , Redes Neurais de Computação , Algoritmos , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Inteligência Artificial , Linfócitos T CD8-Positivos/imunologia , Vacinas Anticâncer/uso terapêutico , Biologia Computacional/métodos , Mineração de Dados , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/metabolismo , Humanos , Mutação de Sentido Incorreto , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Valor Preditivo dos Testes , Ligação Proteica , Software
3.
Cancer Res ; 79(6): 1214-1225, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30541742

RESUMO

Despite the initial successes of immunotherapy, there is an urgent clinical need for molecular assays that identify patients more likely to respond. Here, we report that ultrasensitive measures of circulating tumor DNA (ctDNA) and T-cell expansion can be used to assess responses to immune checkpoint blockade in metastatic lung cancer patients (N = 24). Patients with clinical response to therapy had a complete reduction in ctDNA levels after initiation of therapy, whereas nonresponders had no significant changes or an increase in ctDNA levels. Patients with initial response followed by acquired resistance to therapy had an initial drop followed by recrudescence in ctDNA levels. Patients without a molecular response had shorter progression-free and overall survival compared with molecular responders [5.2 vs. 14.5 and 8.4 vs. 18.7 months; HR 5.36; 95% confidence interval (CI), 1.57-18.35; P = 0.007 and HR 6.91; 95% CI, 1.37-34.97; P = 0.02, respectively], which was detected on average 8.7 weeks earlier and was more predictive of clinical benefit than CT imaging. Expansion of T cells, measured through increases of T-cell receptor productive frequencies, mirrored ctDNA reduction in response to therapy. We validated this approach in an independent cohort of patients with early-stage non-small cell lung cancer (N = 14), where the therapeutic effect was measured by pathologic assessment of residual tumor after anti-PD1 therapy. Consistent with our initial findings, early ctDNA dynamics predicted pathologic response to immune checkpoint blockade. These analyses provide an approach for rapid determination of therapeutic outcomes for patients treated with immune checkpoint inhibitors and have important implications for the development of personalized immune targeted strategies.Significance: Rapid and sensitive detection of circulating tumor DNA dynamic changes and T-cell expansion can be used to guide immune targeted therapy for patients with lung cancer.See related commentary by Zou and Meyerson, p. 1038.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/imunologia , DNA Tumoral Circulante/análise , DNA de Neoplasias/análise , Neoplasias Pulmonares/imunologia , Neoplasia Residual/imunologia , Nivolumabe/uso terapêutico , Antineoplásicos Imunológicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , DNA Tumoral Circulante/genética , Estudos de Coortes , DNA de Neoplasias/genética , Seguimentos , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasia Residual/tratamento farmacológico , Neoplasia Residual/genética , Neoplasia Residual/patologia , Prognóstico , Taxa de Sobrevida
4.
Immunity ; 48(4): 812-830.e14, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29628290

RESUMO

We performed an extensive immunogenomic analysis of more than 10,000 tumors comprising 33 diverse cancer types by utilizing data compiled by TCGA. Across cancer types, we identified six immune subtypes-wound healing, IFN-γ dominant, inflammatory, lymphocyte depleted, immunologically quiet, and TGF-ß dominant-characterized by differences in macrophage or lymphocyte signatures, Th1:Th2 cell ratio, extent of intratumoral heterogeneity, aneuploidy, extent of neoantigen load, overall cell proliferation, expression of immunomodulatory genes, and prognosis. Specific driver mutations correlated with lower (CTNNB1, NRAS, or IDH1) or higher (BRAF, TP53, or CASP8) leukocyte levels across all cancers. Multiple control modalities of the intracellular and extracellular networks (transcription, microRNAs, copy number, and epigenetic processes) were involved in tumor-immune cell interactions, both across and within immune subtypes. Our immunogenomics pipeline to characterize these heterogeneous tumors and the resulting data are intended to serve as a resource for future targeted studies to further advance the field.


Assuntos
Genômica/métodos , Neoplasias , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Feminino , Humanos , Interferon gama/genética , Interferon gama/imunologia , Macrófagos/imunologia , Masculino , Pessoa de Meia-Idade , Neoplasias/classificação , Neoplasias/genética , Neoplasias/imunologia , Prognóstico , Equilíbrio Th1-Th2/fisiologia , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/imunologia , Cicatrização/genética , Cicatrização/imunologia , Adulto Jovem
5.
Appl Environ Microbiol ; 80(8): 2440-50, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24509919

RESUMO

Many pharmaceuticals and personal care products (PPCPs) have been shown to be biotransformed in water treatment systems. However, little research exists on the effect of initial PPCP concentration on PPCP biotransformation or on the microbial communities treating impacted water. In this study, biological PPCP removal at various concentrations was assessed using laboratory columns inoculated with wastewater treatment plant effluent. Pyrosequencing was used to examine microbial communities in the columns and in soil from a soil aquifer treatment (SAT; a method of water treatment prior to reuse) site. Laboratory columns were supplied with different concentrations (0.25, 10, 100, or 1,000 µg liter(-1)) of each of 15 PPCPs. Five PPCPs (4-isopropyl-3-methylphenol [biosol], p-chloro-m-xylenol, gemfibrozil, ketoprofen, and phenytoin) were not removed at any tested concentrations. Two PPCPs (naproxen and triclosan) exhibited removals independent of PPCP concentration. PPCP removal efficiencies were dependent on initial concentrations for biphenylol, p-chloro-m-cresol, chlorophene, diclofenac, 5-fluorouracil, ibuprofen, and valproic acid, showing that PPCP concentration can affect biotransformation. Biofilms from sand samples collected from the 0.25- and 10-µg liter(-1) PPCP columns were pyrosequenced along with SAT soil samples collected on three consecutive days of a wetting and drying cycle to enable comparison of these two communities exposed to PPCPs. SAT communities were similar to column communities in taxonomy and phylotype composition, and both were found to contain close relatives of known PPCP degraders. The efficiency of biological removal of PPCPs was found to be dependent on the concentration at which the contamination occurs for some, but not all, PPCPs.


Assuntos
Biota , Cosméticos/metabolismo , Preparações Farmacêuticas/metabolismo , Reciclagem , Microbiologia do Solo , Poluentes Químicos da Água/metabolismo , Purificação da Água , Biotransformação
6.
PLoS Comput Biol ; 8(10): e1002737, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23133345

RESUMO

We describe methods for rapid sequencing of the entire human mitochondrial genome (mtgenome), which involve long-range PCR for specific amplification of the mtgenome, pyrosequencing, quantitative mapping of sequence reads to identify sequence variants and heteroplasmy, as well as de novo sequence assembly. These methods have been used to study 40 publicly available HapMap samples of European (CEU) and African (YRI) ancestry to demonstrate a sequencing error rate <5.63×10(-4), nucleotide diversity of 1.6×10(-3) for CEU and 3.7×10(-3) for YRI, patterns of sequence variation consistent with earlier studies, but a higher rate of heteroplasmy varying between 10% and 50%. These results demonstrate that next-generation sequencing technologies allow interrogation of the mitochondrial genome in greater depth than previously possible which may be of value in biology and medicine.


Assuntos
DNA Mitocondrial/genética , Genoma Mitocondrial/genética , Genômica/métodos , Análise de Sequência de DNA/métodos , População Negra/genética , Bases de Dados Genéticas , Variação Genética , Projeto HapMap , Humanos , Reação em Cadeia da Polimerase , Alinhamento de Sequência , População Branca/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA