Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Curr Top Med Chem ; 17(30): 3236-3248, 2018 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-29357800

RESUMO

After the identification of the anti-inflammatory properties of VA5-13l (2-benzyl-1- methyl-5-nitroindazolinone) in previous investigations, some of its analogous compounds were designed, synthesized and evaluated in two anti-inflammatory methods: LPS-enhanced leukocyte migration assay in zebrafish; and 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced mouse ear edema. The products evaluated (3, 6, 8, 9 and 10) showed the lower values of relative leukocyte migration at 30 µM (0.14, 0.07, 0.10, 0.13 and 0.07, respectively), while in ear edema and myeloperoxidase activity methods, all the compounds reduced inflammation, only 4 and 16 yielded unsatisfactory results. The relationship linking structure and activity (SAR analysis) was determinate by using SARANEA software. The importance of the 5-Nitro group of the indazole ring for the activity was evident, and showed modest reduction when benzyl (Bn) is changed by alkyl group. A substituted Bn moiety at N2 (R) is the best substituent (5-10); nevertheless, if methylene group of Bn is deleted, the activity is affected. Also, introduction of halogen atoms mainly at positions 3 or 4 of the benzyl moiety (6 and 10) leads in general to strong activities. In fact, compounds 7 and 8 (R = 4-FBn or 4-ClBn, respectively) exhibit satisfactory results in in vivo tests and appear promising. The production of IL-6 at all doses assayed was significantly reduced, except with 16. Nonetheless, the production of TNF-α was significantly inhibited only by this chemical (16) at concentration of 50 µM. On the other hand, compound 2 was the one that mostly inhibited the expression of COX-2 and iNOS. From these results, it can be concluded that the inhibition in the release of cytokines can be one of the mechanisms of action responsible for the anti-inflammatory effect for 2-benzyl derivates while other 2-alkyl derivatives can inhibit production of NO. Therefore, nitroindazolinone chemical prototype could be an interesting structural group with anti-inflammatory purposes in the therapeutic.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Inibidores de Ciclo-Oxigenase 2/farmacologia , Indazóis/farmacologia , Informática , Nitrocompostos/farmacologia , Animais , Anti-Inflamatórios não Esteroides/química , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase 2/química , Relação Dose-Resposta a Droga , Humanos , Indazóis/química , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Estrutura Molecular , Óxido Nítrico/antagonistas & inibidores , Óxido Nítrico/biossíntese , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Óxido Nítrico Sintase Tipo II/metabolismo , Nitrocompostos/química , Relação Estrutura-Atividade , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Peixe-Zebra
3.
PLoS One ; 8(10): e75404, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24124487

RESUMO

Over the past decade, zebrafish (Danio rerio) have emerged as an attractive model for in vivo drug discovery. In this study, we explore the suitability of zebrafish larvae to rapidly evaluate the anti-inflammatory activity of natural products (NPs) and medicinal plants used in traditional medicine for the treatment of inflammatory disorders. First, we optimized a zebrafish assay for leukocyte migration. Inflammation was induced in four days post-fertilization (dpf) zebrafish larvae by tail transection and co-incubation with bacterial lipopolysaccharides (LPS), resulting in a robust recruitment of leukocytes to the zone of injury. Migrating zebrafish leukocytes were detected in situ by myeloperoxidase (MPO) staining, and anti-inflammatory activity was semi-quantitatively scored using a standardized scale of relative leukocyte migration (RLM). Pharmacological validation of this optimized assay was performed with a panel of anti-inflammatory drugs, demonstrating a concentration-responsive inhibition of leukocyte migration for both steroidal and non-steroidal anti-inflammatory drugs (SAIDs and NSAIDs). Subsequently, we evaluated the bioactivity of structurally diverse NPs with well-documented anti-inflammatory properties. Finally, we further used this zebrafish-based assay to quantify the anti-inflammatory activity in the aqueous and methanolic extracts of several medicinal plants. Our results indicate the suitability of this LPS-enhanced leukocyte migration assay in zebrafish larvae as a front-line screening platform in NP discovery, including for the bioassay-guided isolation of anti-inflammatory secondary metabolites from complex NP extracts.


Assuntos
Anti-Inflamatórios/farmacologia , Ensaios de Migração de Leucócitos/métodos , Inflamação/tratamento farmacológico , Larva/citologia , Animais , Inflamação/induzido quimicamente , Larva/efeitos dos fármacos , Lipopolissacarídeos/toxicidade , Peixe-Zebra
4.
PLoS One ; 8(5): e64006, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23700445

RESUMO

Natural products (NPs) are an attractive source of chemical diversity for small-molecule drug discovery. Several challenges nevertheless persist with respect to NP discovery, including the time and effort required for bioassay-guided isolation of bioactive NPs, and the limited biomedical relevance to date of in vitro bioassays used in this context. With regard to bioassays, zebrafish have recently emerged as an effective model system for chemical biology, allowing in vivo high-content screens that are compatible with microgram amounts of compound. For the deconvolution of the complex extracts into their individual constituents, recent progress has been achieved on several fronts as analytical techniques now enable the rapid microfractionation of extracts, and microflow NMR methods have developed to the point of allowing the identification of microgram amounts of NPs. Here we combine advanced analytical methods with high-content screening in zebrafish to create an integrated platform for microgram-scale, in vivo NP discovery. We use this platform for the bioassay-guided fractionation of an East African medicinal plant, Rhynchosia viscosa, resulting in the identification of both known and novel isoflavone derivatives with anti-angiogenic and anti-inflammatory activity. Quantitative microflow NMR is used both to determine the structure of bioactive compounds and to quantify them for direct dose-response experiments at the microgram scale. The key advantages of this approach are (1) the microgram scale at which both biological and analytical experiments can be performed, (2) the speed and the rationality of the bioassay-guided fractionation - generic for NP extracts of diverse origin - that requires only limited sample-specific optimization and (3) the use of microflow NMR for quantification, enabling the identification and dose-response experiments with only tens of micrograms of each compound. This study demonstrates that a complete in vivo bioassay-guided fractionation can be performed with only 20 mg of NP extract within a few days.


Assuntos
Bioensaio/métodos , Produtos Biológicos/farmacologia , Técnicas Analíticas Microfluídicas , Ressonância Magnética Nuclear Biomolecular , Inibidores da Angiogênese/química , Inibidores da Angiogênese/farmacologia , Animais , Animais Geneticamente Modificados , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Vasos Sanguíneos/efeitos dos fármacos , Vasos Sanguíneos/crescimento & desenvolvimento , Movimento Celular/efeitos dos fármacos , Fracionamento Químico , Descoberta de Drogas , Fabaceae/química , Concentração Inibidora 50 , Leucócitos/efeitos dos fármacos , Leucócitos/imunologia , Espectrometria de Massas , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Plantas Medicinais/química , Peixe-Zebra
5.
Eur J Med Chem ; 46(12): 5736-53, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22000935

RESUMO

In this report, we propose the combination of computational methods and in vivo primary screening in zebrafish larvae and confirmatory in mice models as a novel strategy to accelerate anti-inflammatory drug discovery. Initially, a database of 1213 organic chemicals with great structural variability - 587 of them anti-inflammatory agents plus 626 compounds with other clinical uses - was divided into training and test groups. Atom-based quadratic indices - a TOMOCOMD-CARDD molecular descriptors family - and linear discriminant analysis (LDA) were used to develop a total of 13 models to describe the anti-inflammatory activity. The best model (Eq. (13)) shows an accuracy of 87.70% in the training set, and values of Matthews correlation coefficient (C) of 0.75. The robustness of the models was demonstrated using an external test set as validation method, i.e., Eq. (13) revealing classification of 88.44% (C = 0.77) in this series. All models were employed to develop ensemble a QSAR classification system, in which the individual QSAR outputs are the inputs of the aforementioned fusion approach. The fusion model was used for the identification of novel anti-inflammatory compounds using virtual screening of 145 molecules available in our in-house library of indazole, indole, cinnoline and quinoxaline derivatives. Out of these, 34 chemicals were selected, synthesized and tested in a lipopolysaccharide (LPS)-induced leukocyte migration assay in zebrafish larvae. This activity was evaluated based on leukocyte migration to the injury zone of tail-transected larvae. Compounds 18 (3 µM), 24 (10 µM), 25 (10 µM), 6 (10 µM), 15 (30 µM), 11 (30 µM) and 12 (30 µM) gave the best results displaying relative leukocyte migration (RLM) values of 0.24, 0.27, 0.35, 0.41, 0.17, 0. 26 and 0.27 respectively, date that suggest an anti-inflammatory activity of 76, 73, 65, 59, 83, 84 and 73%, respectively. Compound 18 was the most potent but showed high toxicity together with compound 6. Next, we used the tetradecanoylphorbol acetate (TPA)-induced mouse ear oedema model to evaluate the most potent compounds in the zebrafish larvae tail transection assay. All assayed compounds, with the exception of chemical 15, showed anti-inflammatory activity in mice. Compound 12 (VA5-13l, 2-benzyl-1-methyl-5-nitro-1,2-dihydro-3H-indazol-3-one) was the most active and completely abolished the oedema. Compounds 6, 11 and 24 showed inhibition percentages in the range of the reference drug (indomethacin), whereas compounds 18 and 25 reduced the oedema in a lesser extent (inhibition of 73 and 80%, respectively). In addition, all compounds except chemical 15, significantly reduced neutrophil infiltration, measured as myeloperoxidase activity on TPA application test. Compounds 6, 11, 12 and 18 showed values comparable to indomethacin (inhibition percentage of 61), but compounds 6 and 18 were toxic in zebrafish and showed unspecific cytotoxicity in murine macrophages at 100 µg/mL, while the remaining compounds 11, 12 and 25 were inactive at most levels. Evidently, this study suggests a new support structure (12, 11 and 24; a nitroindazolinone chemotype) that constitutes a novel promising lead and may represent an important therapeutic alternative for the treatment of inflammatory conditions.


Assuntos
Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Desenho de Fármacos , Descoberta de Drogas/métodos , Indazóis/química , Indazóis/farmacologia , Animais , Movimento Celular/efeitos dos fármacos , Análise Discriminante , Orelha/patologia , Edema/induzido quimicamente , Edema/tratamento farmacológico , Edema/patologia , Larva/efeitos dos fármacos , Leucócitos/efeitos dos fármacos , Camundongos , Modelos Biológicos , Relação Quantitativa Estrutura-Atividade , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA