Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
NPJ Regen Med ; 8(1): 61, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37919305

RESUMO

In acute skin injury, healing is impaired by the excessive release of reactive oxygen species (ROS). Melanin, an efficient scavenger of radical species in the skin, performs a key role in ROS scavenging in response to UV radiation and is upregulated in response to toxic insult. In a chemical injury model in mice, we demonstrate that the topical application of synthetic melanin particles (SMPs) significantly decreases edema, reduces eschar detachment time, and increases the rate of wound area reduction compared to vehicle controls. Furthermore, these results were replicated in a UV-injury model. Immune array analysis shows downregulated gene expression in apoptotic and inflammatory signaling pathways consistent with histological reduction in apoptosis. Mechanistically, synthetic melanin intervention increases superoxide dismutase (SOD) activity, decreases Mmp9 expression, and suppresses ERK1/2 phosphorylation. Furthermore, we observed that the application of SMPs caused increased populations of anti-inflammatory immune cells to accumulate in the skin, mirroring their decrease from splenic populations. To enhance antioxidant capacity, an engineered biomimetic High Surface Area SMP was deployed, exhibiting increased wound healing efficiency. Finally, in human skin explants, SMP intervention significantly decreased the damage caused by chemical injury. Therefore, SMPs are promising and effective candidates as topical therapies for accelerated wound healing, including via pathways validated in human skin.

2.
ACS Nano ; 16(11): 19087-19095, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36343336

RESUMO

Allomelanin is a class of nitrogen-free melanin mostly found in fungi and, like all naturally occurring melanins, is hydrophilic. Herein, we develop a facile method to modify synthetic hydrophilic allomelanin to yield hydrophobic derivatives through post-synthetic modifications. Amine-functionalized molecules of various kinds can be conjugated to allomelanin nanoparticles under mild conditions with high loading efficiencies. Hydrophobicity is conferred by introducing amine-terminated alkyl groups with different chain lengths. We demonstrate that the resulting hydrophobic allomelanin nanoparticles undergo air/water interfacial self-assembly in a controlled fashion, which enables the generation of large-scale and uniform structural colors. This work provides an efficient and tunable surface chemistry modification strategy to broaden the scope of synthetic melanin structure and function beyond the known diversity found in nature.


Assuntos
Melaninas , Nanopartículas , Melaninas/química , Interações Hidrofóbicas e Hidrofílicas , Nanopartículas/química , Água/química , Aminas
3.
J Am Chem Soc ; 144(10): 4383-4392, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35238544

RESUMO

Herein, a synthetic polymer proteomimetic is described that reconstitutes the key structural elements and function of mussel adhesive protein. The proteomimetic was prepared via graft-through ring-opening metathesis polymerization of a norbornenyl-peptide monomer. The peptide was derived from the natural underwater glue produced by marine mussels that is composed of a highly repetitive 10 amino acid tandem repeat sequence. The hypothesis was that recapitulation of the repeating unit in this manner would provide a facile route to a nature-inspired adhesive. To this end, the material, in which the arrangement of peptide units was as side chains on a brush polymer rather than in a linear fashion as in the natural protein, was examined and compared to the native protein. Mechanical measurements of adhesion forces between solid surfaces revealed improved adhesion properties over the natural protein, making this strategy attractive for diverse applications. One such application is demonstrated, using the polymers as a surface adhesive for the immobilization of live cells.


Assuntos
Adesivos , Bivalves , Adesivos/química , Animais , Bivalves/química , Peptídeos , Polimerização , Polímeros/química
4.
J Am Chem Soc ; 143(10): 4005-4016, 2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33673734

RESUMO

Melanin is a ubiquitous natural pigment found in a diverse array of organisms. Allomelanin is a class of nitrogen-free melanin often found in fungi. Herein, we find artificial allomelanin analogues exhibit high intrinsic microporosity and describe an approach for further increasing and tuning that porosity. Notably, the synthetic method involves an oxidative polymerization of 1,8-DHN in water, negating the need for multiple complex templating steps and avoiding expensive or complex chemical precursors. The well-defined morphologies of these nanomaterials were elucidated by a combination of electron microscopy and scattering methods, yielding to high-resolution 3D reconstruction based on small-angle X-ray scattering (SAXS) results. Synthetic allomelanin nanoparticles exhibit high BET areas, up to 860 m2/g, and are capable of ammonia capture up to 17.0 mmol/g at 1 bar. In addition, these nanomaterials can adsorb nerve agent simulants in solution and as a coating on fabrics with high breathability where they prevent breakthrough. We also confirmed that naturally derived fungal melanin can adsorb nerve gas simulants in solution efficiently despite lower porosity than synthetic analogues. Our approach inspires further analysis of yet to be discovered biological materials of this class where melanins with intrinsic microporosity may be linked to evolutionary advantages in relevant organisms and may in turn inspire the design of new high surface area materials.


Assuntos
Biopolímeros/química , Melaninas/química , Adsorção , Biopolímeros/metabolismo , Fungos/metabolismo , Melaninas/metabolismo , Nanopartículas/química , Naftóis/química , Naftóis/metabolismo , Paraoxon/química , Paraoxon/metabolismo , Porosidade , Espalhamento a Baixo Ângulo , Difração de Raios X
5.
J Am Chem Soc ; 143(8): 3094-3103, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33600146

RESUMO

Commonly known as a skin pigment, melanin has a vital role in UV radiation protection, primarily acting as a radical scavenger. However, a lesser known natural property of melanin, observed in some melanized organisms, is its capacity to adsorb toxins, including metals and organic molecules. Inspired by this, we set out to generate a synthetic porous melanin that would pave the way to enhancing the natural adsorbent properties of melanin and melanin-like materials. Here, we developed a method for the synthesis of porous polydopamine-based melanin utilizing a mesoporous silica (MS) nanoparticle template and characterized its physical properties. Through the oxidative polymerization of dopamine, followed by the etching of silica, we generated synthetic porous melanin (SPM) with the highest measured surface area of any known polydopamine-based material. The prepared SPM was effective for the uptake of various gases and organophosphate toxins, with the material exhibiting high selectivity for CO2 over CH4 and high potential for ammonia capture. Given the demonstrated advantages provided by synthetic porous melanin and melanin's role as an adsorbent in nature, we anticipate the discovery of porous analogues in biological systems.


Assuntos
Melaninas/química , Melaninas/síntese química , Dióxido de Carbono/química , Indóis/química , Metano/química , Polímeros/química , Porosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA