Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(4)2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35216249

RESUMO

Multiple studies have demonstrated that various nanoparticles (NPs) stimulate osteogenic differentiation of mesenchymal stem cells (MSCs) and inhibit adipogenic ones. The mechanisms of these effects are not determined. The aim of this paper was to estimate Wharton's Jelly MSCs phenotype and humoral factor production during tri-lineage differentiation per se and in the presence of silicon-gold NPs. Silicon (SiNPs), gold (AuNPs), and 10% Au-doped Si nanoparticles (SiAuNPs) were synthesized by laser ablation, characterized, and studied in MSC cultures before and during differentiation. Humoral factor production (n = 41) was analyzed by Luminex technology. NPs were nontoxic, did not induce ROS production, and stimulated G-CSF, GM-CSF, VEGF, CXCL1 (GRO) production in four day MSC cultures. During MSC differentiation, all NPs stimulated CD13 and CD90 expression in osteogenic cultures. MSC differentiation resulted in a decrease in multiple humoral factor production to day 14 of incubation. NPs did not significantly affect the production in chondrogenic cultures and stimulated it in both osteogenic and adipogenic ones. The major difference in the protein production between osteogenic and adipogenic MSC cultures in the presence of NPs was VEGF level, which was unaffected in osteogenic cells and 4-9 times increased in adipogenic ones. The effects of NPs decreased in a row AuNPs > SiAuNPs > SiNPs. Taken collectively, high expression of CD13 and CD90 by MSCs and critical level of VEGF production can, at least, partially explain the stimulatory effect of NPs on MSC osteogenic differentiation.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Ouro/farmacologia , Nanopartículas Metálicas/administração & dosagem , Secretoma/efeitos dos fármacos , Silício/farmacologia , Geleia de Wharton/efeitos dos fármacos , Adipogenia/efeitos dos fármacos , Animais , Antígenos CD13/metabolismo , Condrogênese/efeitos dos fármacos , Feminino , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Fenótipo , Secretoma/metabolismo , Antígenos Thy-1/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Geleia de Wharton/metabolismo
2.
J Biomol Struct Dyn ; 38(13): 3959-3971, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31543001

RESUMO

To the present, different efficient but expensive, multistage, and time-consuming technologies have been developed to deliver ribonucleic acids (RNA) into eukaryotic cells. Here, we report a simple and feasible solution to design RNA nanocarriers based on nucleic acid condensation by bi- and trivalent metal ions during thermal cycling. Efficient RNA conversion to nanoparticles with small size (10-50 nm) suitable for transfection was achieved using cations Ni2+, Co2+ or Cu2+ alone or in combination with Ca2+ at the specially selected concentrations (2.0 mM-3.5 mM), low ionic strength, and narrow pH range (8.0-8.5). Other ions - Mn2+, Zn2+, Tb3+, or Gd3+ - caused RNA-cleaving effect that was abolished in the presence of Ni2+, Co2+, Zn2+, or Cu2+. Naked RNA-metal ion nanoparticles were extremely unstable in phosphate buffer and sensitive to serum ribonucleases (RNases), and this problem was solved by treatment with polyarginines-16 and 8. Polyarginine-stabilized nanoparticles, containing malachite green (MG) aptamer RNA and metal cations, crossed the cell membrane, dissociated in the cytoplasm, and preserved the functionality of transported RNA, as judged from efficient transfection of human embryonic kidney 293 cells. The technology, involving RNA condensation by metal cations, can be used as a cheap alternative to produce nanoscale carriers to deliver various RNAs into cells in vitro and in vivo.Communicated by Ramaswamy H. Sarma.


Assuntos
Nanopartículas , RNA , Cátions , Humanos , Metais , Transfecção
3.
Nanoscale Res Lett ; 13(1): 40, 2018 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-29404784

RESUMO

Interaction between porphyrins and quantum dots (QD) via energy and/or charge transfer is usually accompanied by reduction of the QD luminescence intensity and lifetime. However, for CdSe/ZnS-Cys QD water solutions, kept at 276 K during 3 months (aged QD), the significant increase in the luminescence intensity at the addition of meso-tetrakis (p-sulfonato-phenyl) porphyrin (TPPS4) has been observed in this study. Aggregation of QD during the storage provokes reduction in the quantum yield and lifetime of their luminescence. Using steady-state and time-resolved fluorescence techniques, we demonstrated that TPPS4 stimulated disaggregation of aged CdSe/ZnS-Cys QD in aqueous solutions, increasing the quantum yield of their luminescence, which finally reached that of the fresh-prepared QD. Disaggregation takes place due to increase in electrostatic repulsion between QD at their binding with negatively charged porphyrin molecules. Binding of just four porphyrin molecules per single QD was sufficient for total QD disaggregation. The analysis of QD luminescence decay curves demonstrated that disaggregation stronger affected the luminescence related with the electron-hole annihilation in the QD shell. The obtained results demonstrate the way to repair aged QD by adding of some molecules or ions to the solutions, stimulating QD disaggregation and restoring their luminescence characteristics, which could be important for QD biomedical applications, such as bioimaging and fluorescence diagnostics. On the other hand, the disaggregation is important for QD applications in biology and medicine since it reduces the size of the particles facilitating their internalization into living cells across the cell membrane.

4.
J Colloid Interface Sci ; 357(2): 265-72, 2011 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-21377163

RESUMO

Optical sensing polymer particles with tailored semiconductor nanocrystal (QD) loading are prepared by layer-by-layer deposition technique (LbL). Polyacrolein particles of 1.2 µm diameter are used as solid support for deposition of hydrophilic CdSe/ZnS nanocrystal/polyelectrolyte multilayers formed by electrostatic interactions. The pH-dependent fluorescence of QDs and pH-dependent conformations of polyelectrolytes, which likely passivate the surface state of nanocrystals, allow a creation of both mono- and multiplex coded polymer particles with pH-dependent fluorescence intensity. Bovine serum albumin (BSA) as outermost layer makes it possible to design the optical sensing polymer particles with reversibly responded fluorescence at pH variations. The fluorescence of such polymer particles with BSA outer layer is sensitive to copper(II) ion while the fluorescence of these particles is practically insensitive to the other divalent cations (Zn(2+), Ca(2+), Ba(2+), Co(2+), Mg(2+)). The detection limit of Cu(2+) is about 15 nM. Adaptation of LbL method to prepare QD-labeled polymer particles with enhanced complexity (e.g. several types of QDs, multiple biofunctionality) is expected to open new opportunities in biotechnological applications.


Assuntos
Acroleína/química , Nanopartículas/química , Polímeros/química , Pontos Quânticos , Soroalbumina Bovina/química , Animais , Bovinos , Concentração de Íons de Hidrogênio , Proteínas Imobilizadas/química , Modelos Biológicos , Espectrometria de Fluorescência , Propriedades de Superfície
5.
Nanomedicine (Lond) ; 6(2): 195-209, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21385123

RESUMO

AIM: This study aimed to design a panel of uniform particulate biochemical reagents and to test them in specific bioassays. These reagents are polymer particles of different sizes doped with semiconductor nanocrystals and conjugated with either full-size antibodies or recombinant mini-antibodies (4D5 scFv fragment) designed by genetic engineering approaches. MATERIALS & METHODS: A panel of highly fluorescent polymer particles (150-800 nm) were formed by embedding CdSe/ZnS nanocrystals (quantum dots) into preformed polyacrolein and poly(acrolein-co-styrene) particles. Morphology, content and fluorescence characteristics of the prepared materials were studied by laser correlation spectroscopy, spectrophotometry, optical and fluorescent microscopy and fluorimetry. RESULTS: The obtained fluorescent particles sensitized by anti-Yersinia pestis antibodies were used for rapid agglutination glass test suitable for screening analysis of Y. pestis antigen and for microtiter particle agglutination, which, owing to its speed and simplicity, is very beneficial for diagnostic detection of Y. pestis antigen. Recombinant 4D5 scFv antibodies designed and conjugated with polymer particles containing quantum dots provide multipoint highly specific binding with cancer marker HER2/neu on the surface of SKOV-3 cell.


Assuntos
Compostos de Cádmio/química , Nanopartículas/química , Neoplasias Ovarianas/diagnóstico , Peste/diagnóstico , Compostos de Selênio/química , Sulfetos/química , Yersinia pestis/isolamento & purificação , Compostos de Zinco/química , Acroleína/química , Técnicas Biossensoriais/métodos , Linhagem Celular Tumoral , Feminino , Corantes Fluorescentes/química , Fluorimunoensaio/métodos , Humanos , Imunoconjugados/química , Nanotecnologia/métodos , Polímeros/química , Semicondutores , Yersinia pestis/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA