RESUMO
The 2023 Annual Symposium of the Fisheries Society of the British Isles hosted opportunities for researchers, scientists, and policy makers to reflect on the state of art of predicting fish distributions and consider the implications to the marine and aquatic environments of a changing climate. The outcome of one special interest group at the Symposium was a collection of questions, organized under five themes, which begin to capture the state of the field and identify priorities for research and management over the coming years. The five themes were Physiology, Mechanisms, Detect and Measure, Manage, and Wider Ecosystems. The questions, 25 of them, addressed concepts which remain poorly understood, are data deficient, and/or are likely to be impacted in measurable or profound ways by climate change. Moving from the first to the last theme, the questions expanded in the scope of their considerations, from specific processes within the individual to ecosystem-wide impacts, but no one question is bigger than any other: each is important in detecting, understanding, and predicting fish distributions, and each will be impacted by an aspect of climate change. In this way, our questions, particularly those concerning unknown mechanisms and data deficiencies, aimed to offer a guide to other researchers, managers, and policy makers in the prioritization of future work as a changing climate is expected to have complex and disperse impacts on fish populations and distributions that will require a coordinated effort to address.
Assuntos
Mudança Climática , Ecossistema , Peixes , Animais , Peixes/fisiologia , Pesqueiros , Conservação dos Recursos Naturais , Distribuição AnimalRESUMO
In mid-May 2022, pink salmon Oncorhynchus gorbuscha smolts were caught in the rivers Botnsá, Grímsá, and Langá in Iceland. This observation provides the first evidence of successful spawning and the completion of the freshwater phase of the life cycle in Icelandic rivers. It is the most western record of O. gorbuscha smolts in Europe, further west than Russia, Norway, and the UK. Smolts originating from Iceland potentially support the recruitment of this species in the North Atlantic and may lead to the establishment of a self-sustaining population in Iceland.
Assuntos
Oncorhynchus , Salmão , Animais , Islândia , Estágios do Ciclo de Vida , Rios , Europa (Continente)RESUMO
In spring 2022, pink salmon Oncorhynchus gorbuscha smolts were recorded in the UK. Fish were caught in the Rivers Thurso and Oykel in Scotland between 13 and 17 March. To the authors' knowledge, this is the first observation of O. gorbuscha smolts in Europe outside the Scandinavian and Kola peninsulas, including other tributaries of the White and Barents Seas. It also provides evidence of successful spawning in 2021 and completion of the freshwater phase of the life cycle, and indicates the possibility for potential establishment of an O. gorbuscha population in Great Britain.
Assuntos
Oncorhynchus , Salmão , Animais , Estágios do Ciclo de Vida , Escócia , Europa (Continente) , Reino UnidoRESUMO
Invasive non-native species (NNS) are internationally recognized as posing a serious threat to global biodiversity, economies and human health. The identification of invasive NNS is already established, those that may arrive in the future, their vectors and pathways of introduction and spread, and hotspots of invasion are important for a targeted approach to managing introductions and impacts at local, regional and global scales. The aim of this study was to identify which marine and brackish NNS are already present in marine systems of the northeastern Arabia area (Arabian Gulf and Sea of Oman) and of these which ones are potentially invasive, and which species have a high likelihood of being introduced in the future and negatively affect biodiversity. Overall, 136 NNS were identified, of which 56 are already present in the region and a further 80 were identified as likely to arrive in the future, including fish, tunicates, invertebrates, plants and protists. The Aquatic Species Invasiveness Screening Kit (AS-ISK) was used to identify the risk of NNS being (or becoming) invasive within the region. Based on the AS-ISK basic risk assessment (BRA) thresholds, 36 extant and 37 horizon species (53.7% of all species) were identified as high risk. When the impact of climate change on the overall assessment was considered, the combined risk score (BRA+CCA) increased for 38.2% of all species, suggesting higher risk under warmer conditions, including the highest-risk horizon NNS the green crab Carcinus maenas, and the extant macro-alga Hypnea musciformis. This is the first horizon-scanning exercise for NNS in the region, thus providing a vital baseline for future management. The outcome of this study is the prioritization of NNS to inform decision-making for the targeted monitoring and management in the region to prevent new bio-invasions and to control existing species, including their potential for spread.