Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Neuroscience ; 539: 86-102, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-37993086

RESUMO

The vast majority of stroke cases are classified as ischemic stroke, but effective pharmacotherapy strategies to treat brain infarction are still limited. Glutamate, which is a primary mediator of excitotoxicity, contributes to neuronal damage in numerous pathologies, including ischemia. The aim of this study was to investigate the effect of the hydrogen sulfide donor AP39 on excitotoxicity. AP39 was administered as a single dose of 100 nmol/kg b.w. i.v. 10 min after the restoration of blood flow and 100 min after middle cerebral artery occlusion (MCAO) in male Sprague-Dawley rats. Neurological deficits by Phillips's score, and infarct volume by TTC staining were evaluated (n = 8). LC-MS was used to determine the extracellular glutamate concentration in microdialysates collected intrasurgically and from freely moving animals 24 h and 3 days after reperfusion (n = 6). The expression of proteins involved in the regulation of glutamatergic transmission was investigated 24 h after reperfusion by Western-blot analysis (n = 6). The results were verified by double-immunostaining of brain cryosections (n = 6). The results showed a significant longitudinal decrease in extracellular glutamate concentrations in the motor cortex and hippocampus in MCAO + AP39 rats compared to MCAO rats. Moreover, the administration of AP39 increased the content of the GLT-1 transporter and reduced the content of VGLUT1 in the ischemic core. Upregulation of the GLT-1 transporter responsible for glutamate reuptake from the synaptic cleft, and downregulation of VGLUT1, which regulates glutamate transport to synaptic vesicles, indicate that these are important mechanisms by which AP39 reduces extracellular glutamate concentrations and, consequently, excitotoxicity after ischemia.


Assuntos
Isquemia Encefálica , Sulfeto de Hidrogênio , Ratos , Masculino , Animais , Ácido Glutâmico/metabolismo , Sulfeto de Hidrogênio/farmacologia , Ratos Sprague-Dawley , Isquemia Encefálica/metabolismo , Infarto da Artéria Cerebral Média/tratamento farmacológico
2.
Neuroscience ; 533: 63-76, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37827357

RESUMO

Benzophenone-3 (BP-3) is the most commonly used UV filter in cosmetics, which is absorbed through the skin and crosses the blood-brain barrier. This compound increases extracellular glutamate concentrations, lipid peroxidation, the number of microglia cells and induces process of apoptosis. The aim of this study was to determine the effect of BP-3 on the activation and polarization of microglial cells in the frontal cortex and hippocampus of adult male rats exposed to BP-3 prenatally and then for two weeks in adulthood. It has been found, that exposure to BP-3 reduced the expression of the marker of the M2 phenotype of glial cells in both examined brain structures. An increase in the CD86/CD206 microglial phenotype ratio, expression of transcription factor NFκB and activity of caspase-1 were observed only in the frontal cortex, whereas BP-3 increased the level of glucocorticoid receptors in the hippocampus. The in vitro study conducted in the primary culture of rat frontal cortical microglia cells showed that BP-3 increased the LPS-stimulated release of pro-inflammatory cytokines IL-1α, IL-1ß, TNFα, but in cultures without LPS there was decreased IL-1α, IL-6 and TNFα production, while the IL-18 and IP-10 was elevated. The obtained results indicate that differences in the level of immunoactivation between the frontal cortex and the hippocampus may result from the action of this compound on glucocorticoid receptors. In turn, changes in cytokine production in microglial cells indicate that BP-3 aggravates the LPS-induced immunoactivation.


Assuntos
Microglia , Fator de Necrose Tumoral alfa , Ratos , Animais , Masculino , Microglia/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Lipopolissacarídeos/farmacologia , Receptores de Glucocorticoides/metabolismo , Citocinas/metabolismo
3.
Reprod Toxicol ; 120: 108450, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37543253

RESUMO

Benzophenone derivatives such as benzophenone-2 (BP-2) belong to the group of endocrine disrupting compounds (EDCs). Increased exposure to EDCs is considered to be an important factor behind the decline of human fertility. The main aim of the present study was to determine the effect of BP-2 on testicular function specified by sperm analysis, the level of sex hormones and their receptors. Since BP-2 has been shown to activate the immune system, another aim of the research was to verify the hypothesis that the immune system may be contributing to the testis toxicity of this compound and for this purpose changes in macrophage and lymphocyte populations in the testes were determined. BP-2 at a dose of 100 mg/kg was administered dermally, twice daily at a dose of 100 mg/kg for 4-weeks. It was shown that BP-2 reduced the number and motility of sperm and increased the number of sperm showing morphological changes. By determining the concentration of sex hormones, a significant decrease in testosterone levels and an increase in the blood levels of 17ß-estradiol were demonstrated. Similar to the results obtained from the blood samples, testosterone levels in the testes were lowered, which could affect sperm parameters. The effect of BP-2 on lowering testosterone levels and the number of sperm cells may be due to immunoactivation in the testes, because it has been detected that this compound significantly decreased the number of the immunosuppressive resident testicular macrophages (TMs) (CD68-CD163+), but increased pro-inflammatory TMs with monocyte-like properties (CD68+CD163-).


Assuntos
Sêmen , Testículo , Ratos , Masculino , Humanos , Animais , Hormônios Esteroides Gonadais , Benzofenonas/toxicidade , Testosterona , Contagem de Espermatozoides
4.
Mol Neurobiol ; 60(6): 3130-3146, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36802054

RESUMO

Brain ischemia is one of the leading causes of death and long-term disability in the world. Interruption of the blood supply to the brain is a direct stimulus for many pathological events. The massive vesicular release of glutamate (Glu) after ischemia onset induces excitotoxicity, which is a potent stress on neurons. Loading of presynaptic vesicles with Glu is the first step of glutamatergic neurotransmission. Vesicular glutamate transporters 1, 2, and 3 (VGLUT1, 2, and 3) are the main players involved in filling presynaptic vesicles with Glu. VGLUT1 and VGLUT2 are expressed mainly in glutamatergic neurons. Therefore, the possibility of pharmacological modulation to prevent ischemia-related brain damage is attractive. In this study, we aimed to determine the effect of focal cerebral ischemia on the spatiotemporal expression of VGLUT1 and VGLUT2 in rats. Next, we investigated the influence of VGLUT inhibition with Chicago Sky Blue 6B (CSB6B) on Glu release and stroke outcome. The effect of CSB6B pretreatment on infarct volume and neurological deficit was compared with a reference model of ischemic preconditioning. The results of this study indicate that ischemia upregulated the expression of VGLUT1 in the cerebral cortex and in the dorsal striatum 3 days after ischemia onset. The expression of VGLUT2 was elevated in the dorsal striatum and in the cerebral cortex 24 h and 3 days after ischemia, respectively. Microdialysis revealed that pretreatment with CSB6B significantly reduced the extracellular Glu concentration. Altogether, this study shows that inhibition of VGLUTs might be a promising therapeutic strategy for the future.


Assuntos
Isquemia Encefálica , Proteínas Vesiculares de Transporte de Glutamato , Ratos , Animais , Neuroproteção , Azul Tripano/farmacologia , Infarto Cerebral
5.
J Cell Mol Med ; 26(10): 3060-3067, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35451185

RESUMO

A proper reference gene (RG) is required to reliably measure mRNA levels in biological samples via quantitative reverse transcription PCR (RT-qPCR). Various experimental paradigms require specific and stable RGs. In studies using rodent models of brain ischaemia, a variety of genes, such as ß-actin (Actb), hypoxanthine phosphoribosyltransferase 1 (Hprt1), peptidyl-propyl isomerase A (Ppia) and glyceraldehyde-3-phosphate dehydrogenase (Gapdh), are used as RGs. However, most of these genes have not been validated in specific experimental settings. The aim of this study was to evaluate the time- and brain region-dependent expression of RG candidates in a rat model of transient middle cerebral artery occlusion (tMCAO). The following genes were selected: Actb, Hprt1, Ppia, Gapdh, tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, zeta (Ywhaz) and beta-2 microglobulin (B2m). Focal cerebral ischaemia was induced by 90 min of tMCAO in male Sprague-Dawley rats. Expression was investigated at four time points (12 and 24 h; 3 and 7 days) and in three brain areas (the frontal cortex, hippocampus and dorsal striatum) within the ischaemic brain hemisphere. The RT-qPCR results were analysed using variance analysis and the ΔCt, GeNorm, NormFinder and BestKeeper methods. Data from these algorithms were ranked using the geometric mean of ranks of each analysis. Ppia, Hprt1 and Ywhaz were the most stable genes across the analysed brain areas and time points. B2m and Actb exhibited the greatest fluctuations, and the results for Gapdh were ambiguous.


Assuntos
Isquemia Encefálica , Gliceraldeído-3-Fosfato Desidrogenases , Actinas/genética , Animais , Isquemia Encefálica/genética , Expressão Gênica , Perfilação da Expressão Gênica/métodos , Gliceraldeído-3-Fosfato Desidrogenases/genética , Masculino , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Padrões de Referência
6.
Int J Mol Sci ; 22(15)2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34360581

RESUMO

Ischemic stroke is the third leading cause of death in the world, which accounts for almost 12% of the total deaths worldwide. Despite decades of research, the available and effective pharmacotherapy is limited. Some evidence underlines the beneficial properties of hydrogen sulfide (H2S) donors, such as NaSH, in an animal model of brain ischemia and in in vitro research; however, these data are ambiguous. This study was undertaken to verify the neuroprotective activity of AP39, a slow-releasing mitochondria-targeted H2S delivery molecule. We administered AP39 for 7 days prior to ischemia onset, and the potential to induce brain tolerance to ischemia was verified. To do this, we used the rat model of 90-min middle cerebral artery occlusion (MCAO) and used LC-MS/MS, RT-PCR, LuminexTM assays, Western blot and immunofluorescent double-staining to determine the absolute H2S levels, inflammatory markers, neurotrophic factor signaling pathways and apoptosis marker in the ipsilateral frontal cortex, hippocampus and in the dorsal striatum 24 h after ischemia onset. AP39 (50 nmol/kg) reduced the infarct volume, neurological deficit and reduced the microglia marker (Iba1) expression. AP39 also exerted prominent anti-inflammatory activity in reducing the release of Il-1ß, Il-6 and TNFα in brain areas particularly affected by ischemia. Furthermore, AP39 enhanced the pro-survival pathways of neurotrophic factors BDNF-TrkB and NGF-TrkA and reduced the proapoptotic proNGF-p75NTR-sortilin pathway activity. These changes corresponded with reduced levels of cleaved caspase 3. Altogether, AP39 treatment induced adaptative changes within the brain and, by that, developed brain tolerance to ischemia.


Assuntos
Isquemia Encefálica/prevenção & controle , Sulfeto de Hidrogênio/metabolismo , Infarto da Artéria Cerebral Média/complicações , Mitocôndrias/metabolismo , Compostos Organofosforados/farmacologia , Substâncias Protetoras/farmacologia , Tionas/farmacologia , Animais , Isquemia Encefálica/etiologia , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Sulfeto de Hidrogênio/análise , Masculino , Mitocôndrias/efeitos dos fármacos , Compostos Organofosforados/administração & dosagem , Substâncias Protetoras/administração & dosagem , Ratos , Ratos Sprague-Dawley , Tionas/administração & dosagem
7.
J Neuroinflammation ; 17(1): 247, 2020 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-32829711

RESUMO

BACKGROUND: The bidirectional communication between neurons and microglia is fundamental for the homeostasis and biological function of the central nervous system. Maternal immune activation (MIA) is considered to be one of the factors affecting these interactions. Accordingly, MIA has been suggested to be involved in several neuropsychiatric diseases, including schizophrenia. The crucial regulatory systems for neuron-microglia crosstalk are the CX3CL1-CX3CR1 and CD200-CD200R axes. METHODS: We aimed to clarify the impact of MIA on CX3CL1-CX3CR1 and CD200-CD200R signalling pathways in the brains of male Wistar rats in early and adult life by employing two neurodevelopmental models of schizophrenia based on the prenatal challenge with lipopolysaccharide (LPS) and polyinosinic:polycytidylic acid (Poly I:C). We also examined the effect of MIA on the expression of microglial markers and the profile of cytokines released in the brains of young offspring, as well as the behaviour of adult animals. Moreover, we visualized the localization of ligand-receptor systems in the hippocampal regions (CA1, CA3 and DG) and the frontal cortex of young rats exposed to MIA. The differences between groups were analysed using Student's t test. RESULTS: We observed that MIA altered developmental trajectories in neuron-microglia communication in the brains of young offspring, as evidenced by the disruption of CX3CL1-CX3CR1 and/or CD200-CD200R axes. Our data demonstrated the presence of abnormalities after LPS-induced MIA in levels of Cd40, Il-1ß, Tnf-α, Arg1, Tgf-ß and Il-10, as well as IBA1, IL-1ß and IL-4, while after Poly I:C-generated MIA in levels of Cd40, iNos, Il-6, Tgf-ß, Il-10, and IBA1, IL-1ß, TNF-α, IL-6, TGF-ß and IL-4 early in the life of male animals. In adult male rats that experienced prenatal exposure to MIA, we observed behavioural changes resembling a schizophrenia-like phenotype. CONCLUSIONS: Our study provides evidence that altered CX3CL1-CX3CR1 and/or CD200-CD200R pathways, emerging after prenatal immune challenge with LPS and Poly I:C, might be involved in the aetiology of schizophrenia.


Assuntos
Encéfalo/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Poli I-C/farmacologia , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Antígenos CD/metabolismo , Encéfalo/metabolismo , Receptor 1 de Quimiocina CX3C/metabolismo , Quimiocina CX3CL1/metabolismo , Feminino , Masculino , Gravidez , Ratos , Ratos Wistar , Receptores Imunológicos/metabolismo , Esquizofrenia/metabolismo
8.
Neurotox Res ; 37(3): 683-701, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31970650

RESUMO

Benzophenone-3 (BP-3), the most widely used UV chemical filter, is absorbed well through the skin and gastrointestinal tract and can affect some body functions, including the survival of nerve cells. Previously, we showed that BP-3 evoked a neurotoxic effect in male rats, but since the effects of this compound are known to depend on gender, the aim of the present study was to show the concentration and potential neurotoxic action of this compound in the female rat brain. BP-3 was administered dermally to female rats during pregnancy, and then in the 7th and 8th weeks of age to their female offspring. The effect of BP-3 exposure on short-term and spatial memory, its concentrations in blood, the liver, the frontal cortex, and the hippocampus, and the effect on selected markers of brain damage were determined. Also, the impact of BP-3 on sex and thyroid hormone levels in blood and hematological parameters was examined. It has been found that this compound was present in blood and brain structures in females at a lower concentration than in males. BP-3 in both examined brain structures increased extracellular glutamate concentration and enhanced lipid peroxidation, but did not induce the apoptotic process. The tested compound also evoked hyperthyroidism and decreased the blood progesterone level and the number of erythrocytes. The presented data indicated that, after the same exposure to BP-3, this compound was at a lower concentration in the female brain than in that of the males. Although BP-3 did not induce apoptosis in the hippocampus and frontal cortex, the increased extracellular glutamate concentration and lipid peroxidation, as well as impaired spatial memory, suggested that this compound also had adverse effects in the female brain yet was weaker than in males. In contrast to the weaker effects of the BP-3 on females than the brain of males, this compound affected the endocrine system and evoked a disturbance in hematological parameters more strongly than in male rats.


Assuntos
Apoptose/efeitos dos fármacos , Benzofenonas/toxicidade , Lobo Frontal/efeitos dos fármacos , Hormônios Esteroides Gonadais/sangue , Hipocampo/efeitos dos fármacos , Protetores Solares/toxicidade , Hormônios Tireóideos/sangue , Administração Cutânea , Animais , Proteínas Reguladoras de Apoptose/efeitos dos fármacos , Benzofenonas/administração & dosagem , Feminino , Lobo Frontal/metabolismo , Ácido Glutâmico/metabolismo , Hipocampo/metabolismo , Ratos Sprague-Dawley , Receptores de Hidrocarboneto Arílico/metabolismo , Receptores de Estrogênio/metabolismo , Receptores de Progesterona/metabolismo , Protetores Solares/administração & dosagem
9.
Toxicol Sci ; 171(2): 485-500, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31368502

RESUMO

Benzophenone-3 is the most commonly used UV filter. It is well absorbed through the skin and gastrointestinal tract. Its best-known side effect is the impact on the function of sex hormones. Little is known about the influence of BP-3 on the brain. The aim of this study was to show whether BP-3 crosses the blood-brain barrier (BBB), to determine whether it induces nerve cell damage in susceptible brain structures, and to identify the mechanism of its action in the central nervous system. BP-3 was administered dermally during the prenatal period and adulthood to rats. BP-3 effect on short-term and spatial memory was determined by novel object and novel location recognition tests. BP-3 concentrations were assayed in the brain and peripheral tissues. In brain structures, selected markers of brain damage were measured. The study showed that BP-3 is absorbed through the rat skin, passes through the BBB. BP-3 raised oxidative stress and induced apoptosis in the brain. BP-3 increased the concentration of extracellular glutamate in examined brain structures and changed the expression of glutamate transporters. BP-3 had no effect on short-term memory but impaired spatial memory. The present study showed that dermal BP-3 exposure may cause damage to neurons what might be associated with the increase in the level of extracellular glutamate, most likely evoked by changes in the expression of GLT-1 and xCT glutamate transporters. Thus, exposure to BP-3 may be one of the causes that increase the risk of developing neurodegenerative diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA