Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 11(10): e0164475, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27760205

RESUMO

One of the most valuable aquaculture fish in Europe is the rainbow trout, Oncorhynchus mykiss, but the profitability of trout production is threatened by a highly lethal infectious disease, viral hemorrhagic septicemia (VHS), caused by the VHS virus (VHSV). For the past few decades, the subgenogroup Ia of VHSV has been the main cause of VHS outbreaks in European freshwater-farmed rainbow trout. Little is currently known, however, about the phylogenetic radiation of this Ia lineage into subordinate Ia clades and their subsequent geographical spread routes. We investigated this topic using the largest Ia-isolate dataset ever compiled, comprising 651 complete G gene sequences: 209 GenBank Ia isolates and 442 Ia isolates from this study. The sequences come from 11 European countries and cover the period 1971-2015. Based on this dataset, we documented the extensive spread of the Ia population and the strong mixing of Ia isolates, assumed to be the result of the Europe-wide trout trade. For example, the Ia lineage underwent a radiation into nine Ia clades, most of which are difficult to allocate to a specific geographic distribution. Furthermore, we found indications for two rapid, large-scale population growth events, and identified three polytomies among the Ia clades, both of which possibly indicate a rapid radiation. However, only about 4% of Ia haplotypes (out of 398) occur in more than one European country. This apparently conflicting finding regarding the Europe-wide spread and mixing of Ia isolates can be explained by the high mutation rate of VHSV. Accordingly, the mean period of occurrence of a single Ia haplotype was less than a full year, and we found a substitution rate of up to 7.813 × 10-4 nucleotides per site per year. Finally, we documented significant differences between Germany and Denmark regarding their VHS epidemiology, apparently due to those countries' individual handling of VHS.


Assuntos
Aquicultura , Novirhabdovirus/classificação , Filogenia , Animais , Peixes/virologia , Haplótipos , Novirhabdovirus/genética , Novirhabdovirus/fisiologia , RNA Viral/genética
2.
J Virol ; 88(13): 7189-98, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24719422

RESUMO

UNLABELLED: Viral hemorrhagic septicemia virus (VHSV) is separated into four different genotypes (I to IV) with different sublineages (K. Einer-Jensen, P. Ahrens, R. Forsberg, and N. Lorenzen, J. Gen. Virol. 85:1167-1179, 2004; K. Einer-Jensen, J. Winton, and N. Lorenzen, Vet. Microbiol. 106:167-178, 2005). European marine VHSV strains (of genotypes I to III) are, in general, nonpathogenic or have very low pathogenicity to rainbow trout after a waterborne challenge, and here we also show that genotype IVa is nonpathogenic to trout. Despite several attempts, it has not been possible to link genomic variation to in vivo virulence. In vitro virulence to gill epithelial cells (GECs) has been used as a proxy for in vivo virulence, and here we extend these studies further with the purpose of identifying residues associated with in vitro virulence. Genotype Ia (DK-3592B) and III (NO/650/07) isolates, which are pathogenic to rainbow trout (O. B. Dale, I. Orpetveit, T. M. Lyngstad, S. Kahns, H. F. Skall, N. J. Olesen, and B. H. Dannevig, Dis. Aquat. Organ. 85:93-103, 2009), were compared to two marine strains that are nonpathogenic to trout, genotypes Ib (strain 1p8 [H. F. Mortensen, O. E. Heuer, N. Lorenzen, L. Otte, and N. J. Olesen, Virus Res. 63:95-106, 1999]) and IVa (JF-09). DK-3592 and NO/650/07 were pathogenic to GECs, while marine strains 1p8 and JF-09 were nonpathogenic to GECs. Eight conserved amino acid substitutions contrasting high- and low-virulence strains were identified, and reverse genetics was used in a gain-of-virulence approach based on the JF-09 backbone. Mutations were introduced into the G, NV, and L genes, and seven different virus clones were obtained. For the first time, we show that a single amino acid mutation in conserved region IV of the L protein, I1012F, rendered the virus able to replicate and induce a cytopathic effect in trout GECs. The other six mutated variants remained nonpathogenic. IMPORTANCE: This is the first study to clearly link in vitro virulence of viral hemorrhagic septicemia virus (VHSV) with an amino acid residue in the L protein, a site located in conserved region IV of the L protein. In vitro virulence is documented by induction of cytopathic effects and viability studies of gill epithelial cells, and the observed cellular responses to infection are associated with increased viral replication levels. There are no previous studies addressing the importance of the L protein or the RNA-dependent RNA polymerase for virus virulence in vitro or in vivo. Therefore, the findings reported here should broaden the search for pathogenicity traits in novirhabdoviruses, and there is a possibility that the polymerase participates in defining the host species virulence of various VHSV strains.


Assuntos
RNA Polimerases Dirigidas por DNA/genética , Células Epiteliais/virologia , Brânquias/virologia , Septicemia Hemorrágica Viral/virologia , Mutação/genética , Novirhabdovirus/genética , Novirhabdovirus/patogenicidade , Virulência/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Doenças dos Peixes/genética , Doenças dos Peixes/virologia , Septicemia Hemorrágica Viral/genética , Técnicas In Vitro , Macrófagos/virologia , Dados de Sequência Molecular , Novirhabdovirus/enzimologia , Oncorhynchus mykiss/genética , Oncorhynchus mykiss/crescimento & desenvolvimento , Oncorhynchus mykiss/virologia , Homologia de Sequência de Aminoácidos
3.
J Virol ; 82(21): 10359-65, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18753199

RESUMO

Two strains of viral hemorrhagic septicemia virus (VHSV) with known different virulence characteristics in vivo were studied (by a time course approach) for their abilities to infect and translocate across a primary culture of gill epithelial cells (GEC) of rainbow trout (RBT; Oncorhynchus mykiss). The strains included one low-virulence marine VHSV (ma-VHSV) strain, ma-1p8, and a highly pathogenic freshwater VHSV (fw-VHSV) strain, fw-DK-3592B. Infectivities toward trout head kidney macrophages were also studied (by a time course method), and differences in in vivo virulence were reconfirmed, the aim being to determine any correlation between in vivo virulence and in vitro infectivity. The in vitro studies showed that the fw-VHSV isolate infected and caused a cytotoxic effect in monolayers of GEC (demonstrating virulence) at an early time point (2 h postinoculation) and that the same virus strain had translocated over a confluent, polarized GEC layer by 2 h postinoculation. The marine isolate did not infect monolayers of GEC, and delayed translocation across polarized GEC was seen by 48 h postinoculation. Primary cultures of head kidney macrophages were also infected with fw-VHSV, with a maximum of 9.5% virus-positive cells by 3 days postinfection, while for the ma-VHSV strain, only 0.5% of the macrophages were positive after 3 days of culture. In vivo studies showed that the fw-VHSV strain was highly virulent for RBT fry and caused high mortality, with classical features of viral hemorrhagic septicemia. The ma-VHSV showed a very low level of virulence (only one pool of samples from the dead fish was VHSV positive). This study has shown that the differences in virulence between marine and freshwater strains of VHSV following the in vivo infection of RBT correlate with in vitro abilities to infect primary cultures of GEC and head kidney macrophages of the same species.


Assuntos
Células Epiteliais/virologia , Doenças dos Peixes/virologia , Novirhabdovirus/isolamento & purificação , Novirhabdovirus/patogenicidade , Infecções por Rhabdoviridae/veterinária , Animais , Sobrevivência Celular , Células Cultivadas , Brânquias/virologia , Macrófagos/virologia , Oncorhynchus mykiss , Infecções por Rhabdoviridae/virologia , Análise de Sobrevida , Virulência , Microbiologia da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA