Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 16516, 2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37783694

RESUMO

Bacterial colonization is mediated by fimbriae, which are thin hair-like appendages dispersed from the bacterial surface. The aggregative adherence fimbriae from enteroaggregative E. coli are secreted through the outer membrane and consist of polymerized minor and major pilin subunits. Currently, the understanding of the structural morphology and the role of the minor pilin subunit in the polymerized fimbriae are limited. In this study we use small-angle X-ray scattering to reveal the structural morphology of purified fimbriae in solution. We show that the aggregative fimbriae are compact arrangements of subunit proteins Agg5A + Agg3B which are assembled pairwise on a flexible string rather than extended in relatively straight filaments. Absence of the minor subunit leads to less compact fimbriae, but did not affect the length. The study provides novel insights into the structural morphology and assembly of the aggregative adherence fimbriae. Our study suggests that the minor subunit is not located at the tip of the fimbriae as previously speculated but has a higher importance for the assembled fimbriae by affecting the global structure.


Assuntos
Escherichia coli , Proteínas de Fímbrias , Proteínas de Fímbrias/metabolismo , Escherichia coli/metabolismo , Espalhamento a Baixo Ângulo , Difração de Raios X , Aderência Bacteriana , Fímbrias Bacterianas/metabolismo
2.
Mol Pharm ; 20(5): 2738-2753, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37067466

RESUMO

Monoclonal antibody solutions are set to become a major therapeutic tool in the years to come, capable of targeting various diseases by clever design of their antigen binding site. However, the formulation of stable solutions suitable for patient self-administration typically presents challenges, as a result of the increase in viscosity that often occurs at high concentrations. Here, we establish a link between the microscopic molecular details and the resulting properties of an antibody solution through the characterization of clusters, which arise in the presence of self-associating antibodies. In particular, we find that experimental small-angle X-ray scattering data can be interpreted by means of analytical models previously exploited for the study of polymeric and colloidal objects, based on the presence of such clusters. The latter are determined by theoretical calculations and supported by computer simulations of a coarse-grained minimal model, in which antibodies are treated as Y-shaped colloidal molecules and attractive domains are designed as patches. Using the theoretically predicted cluster size distributions, we are able to describe the experimental structure factors over a wide range of concentration and salt conditions. We thus provide microscopic evidence for the well-established fact that the concentration-dependent increase in viscosity is originated by the presence of clusters. Our findings bring new insights on the self-assembly of monoclonal antibodies, which can be exploited for guiding the formulation of stable and effective antibody solutions.


Assuntos
Anticorpos Monoclonais , Cloreto de Sódio , Humanos , Anticorpos Monoclonais/química , Simulação por Computador , Viscosidade , Soluções
3.
Biophys J ; 119(12): 2483-2496, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33189682

RESUMO

We present a multiscale characterization of aqueous solutions of the bovine eye lens protein ßH crystallin from dilute conditions up to dynamical arrest, combining dynamic light scattering, small-angle x-ray scattering, tracer-based microrheology, and neutron spin echo spectroscopy. We obtain a comprehensive explanation of the observed experimental signatures from a model of polydisperse hard spheres with additional weak attraction. In particular, the model predictions quantitatively describe the multiscale dynamical results from microscopic nanometer cage diffusion over mesoscopic micrometer gradient diffusion up to macroscopic viscosity. Based on a comparative discussion with results from other crystallin proteins, we suggest an interesting common pathway for dynamical arrest in all crystallin proteins, with potential implications for the understanding of crowding effects in the eye lens.


Assuntos
Cristalino , beta-Cristalinas , Animais , Bovinos , Difusão , Proteínas , Viscosidade
4.
Mol Pharm ; 16(6): 2394-2404, 2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31059276

RESUMO

Concentrated solutions of monoclonal antibodies have attracted considerable attention due to their importance in pharmaceutical formulations; yet, their tendency to aggregate and the resulting high viscosity pose considerable problems. Here we tackle this problem by a soft condensed matter physics approach, which combines a variety of experimental measurements with a patchy colloid model, amenable of analytical solution. We thus report results of structural antibodies and dynamic properties obtained through scattering methods and microrheological experiments. We model the data using a colloid-inspired approach, explicitly taking into account both the anisotropic shape of the molecule and its charge distribution. Our simple patchy model is able to disentangle self-assembly and intermolecular interactions and to quantitatively describe the concentration-dependence of the osmotic compressibility, collective diffusion coefficient, and zero shear viscosity. Our results offer new insights on the key problem of antibody formulations, providing a theoretical and experimental framework for a quantitative assessment of the effects of additional excipients or chemical modifications and a prediction of the resulting viscosity.


Assuntos
Anticorpos/química , Coloides/química , Osmose , Viscosidade
5.
Langmuir ; 34(42): 12569-12582, 2018 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-30239200

RESUMO

Phospholipid nanodiscs have quickly become a widely used platform for studies of membrane proteins. However, the molecular self-assembly process that ultimately should place a membrane protein inside a nanodisc is not well understood. This poses a challenge for a successful high-yield reconstitution of general membrane proteins into nanodiscs. In the present work, the self-assembly process of POPC-MSP1D1 nanodiscs was carefully investigated by systematically modulating the reconstitution parameters and probing the effect with a small-angle X-ray scattering analysis of the resulting nanodiscs. First, it was established that nanodiscs prepared using the standard protocol followed a narrow but significant size distribution and that the formed nanodiscs were stable at room temperature over a time range of about a week. Systematic variation of the POPC/MSP1D1 stoichiometry of the reconstitution mixture showed that a ratio of less than 75:1 resulted in lipid-poor nanodiscs, whereas ratios of 75:1 and larger resulted in nanodiscs with constant POPC/MSP1D1 ratios of 60:1. A central step in the self-assembly process consists in adding detergent-absorbing resin beads to the reconstitution mixture to remove the reconstitution detergent. Surprisingly, it was found that this step did not play a significant role for the shape and stoichiometry of the formed nanodiscs. Finally, the effect of the choice of detergent used in the reconstitution process was investigated. It was found that detergent type is a central determining factor for the shape and stoichiometry of the formed nanodiscs. A significantly increasing POPC/MSP1D1 stoichiometry of the formed nanodiscs was observed as the reconstitution detergent type is changed in the order: Tween80, DDM, Triton X-100, OG, CHAPS, Tween20, and Cholate, but with no simple correlation to the characteristics of the detergent. This emphasizes that the detergents optimal for solution storage and crystallization of membrane proteins, in particular DDM, should not be used alone for nanodisc reconstitution. However, our data also show that when applying mixtures of the reconstitution detergent cholate and the storage detergents DDM or OG, cholate dominates the reconstitution process and nanodiscs are obtained, which resemble those formed without storage detergents.

6.
Proc Natl Acad Sci U S A ; 115(26): E6020-E6029, 2018 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-29899144

RESUMO

The intravascular processing of triglyceride-rich lipoproteins depends on lipoprotein lipase (LPL) and GPIHBP1, a membrane protein of endothelial cells that binds LPL within the subendothelial spaces and shuttles it to the capillary lumen. In the absence of GPIHBP1, LPL remains mislocalized within the subendothelial spaces, causing severe hypertriglyceridemia (chylomicronemia). The N-terminal domain of GPIHBP1, an intrinsically disordered region (IDR) rich in acidic residues, is important for stabilizing LPL's catalytic domain against spontaneous and ANGPTL4-catalyzed unfolding. Here, we define several important properties of GPIHBP1's IDR. First, a conserved tyrosine in the middle of the IDR is posttranslationally modified by O-sulfation; this modification increases both the affinity of GPIHBP1-LPL interactions and the ability of GPIHBP1 to protect LPL against ANGPTL4-catalyzed unfolding. Second, the acidic IDR of GPIHBP1 increases the probability of a GPIHBP1-LPL encounter via electrostatic steering, increasing the association rate constant (kon) for LPL binding by >250-fold. Third, we show that LPL accumulates near capillary endothelial cells even in the absence of GPIHBP1. In wild-type mice, we expect that the accumulation of LPL in close proximity to capillaries would increase interactions with GPIHBP1. Fourth, we found that GPIHBP1's IDR is not a key factor in the pathogenicity of chylomicronemia in patients with the GPIHBP1 autoimmune syndrome. Finally, based on biophysical studies, we propose that the negatively charged IDR of GPIHBP1 traverses a vast space, facilitating capture of LPL by capillary endothelial cells and simultaneously contributing to GPIHBP1's ability to preserve LPL structure and activity.


Assuntos
Células Endoteliais/metabolismo , Lipase Lipoproteica/metabolismo , Receptores de Lipoproteínas/metabolismo , Proteína 4 Semelhante a Angiopoietina/química , Proteína 4 Semelhante a Angiopoietina/genética , Proteína 4 Semelhante a Angiopoietina/metabolismo , Animais , Células Endoteliais/patologia , Humanos , Hiperlipoproteinemia Tipo I/genética , Hiperlipoproteinemia Tipo I/metabolismo , Hiperlipoproteinemia Tipo I/patologia , Lipase Lipoproteica/química , Lipase Lipoproteica/genética , Camundongos , Ligação Proteica , Domínios Proteicos , Receptores de Lipoproteínas/química , Receptores de Lipoproteínas/genética , Tirosina/química , Tirosina/genética , Tirosina/metabolismo
7.
FEBS J ; 285(2): 357-371, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29178440

RESUMO

A novel and generally applicable method for determining structures of membrane proteins in solution via small-angle neutron scattering (SANS) is presented. Common detergents for solubilizing membrane proteins were synthesized in isotope-substituted versions for utilizing the intrinsic neutron scattering length difference between hydrogen and deuterium. Individual hydrogen/deuterium levels of the detergent head and tail groups were achieved such that the formed micelles became effectively invisible in heavy water (D2 O) when investigated by neutrons. This way, only the signal from the membrane protein remained in the SANS data. We demonstrate that the method is not only generally applicable on five very different membrane proteins but also reveals subtle structural details about the sarco/endoplasmatic reticulum Ca2+ ATPase (SERCA). In all, the synthesis of isotope-substituted detergents makes solution structure determination of membrane proteins by SANS and subsequent data analysis available to nonspecialists.


Assuntos
Detergentes/química , Glucosídeos/química , Maltose/análogos & derivados , Proteínas de Membrana/química , Difração de Nêutrons , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/química , Espalhamento a Baixo Ângulo , Maltose/química , Micelas , Conformação Proteica
8.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 12): 2412-21, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26627649

RESUMO

Membrane proteins reconstituted into phospholipid nanodiscs comprise a soluble entity accessible to solution small-angle X-ray scattering (SAXS) studies. It is demonstrated that using SAXS data it is possible to determine both the shape and localization of the membrane protein cytochrome P450 3A4 (CYP3A4) while it is embedded in the phospholipid bilayer of a nanodisc. In order to accomplish this, a hybrid approach to analysis of small-angle scattering data was developed which combines an analytical approach to describe the multi-contrast nanodisc with a free-form bead-model description of the embedded protein. The protein shape is then reconstructed ab initio to optimally fit the data. The result of using this approach is compared with the result obtained using a rigid-body description of the CYP3A4-in-nanodisc system. Here, the CYP3A4 structure relies on detailed information from crystallographic and molecular-dynamics studies of CYP3A4. Both modelling approaches arrive at very similar solutions in which the α-helical anchor of the CYP3A4 systematically stays close to the edge of the nanodisc and with the large catalytic domain leaning over the outer edge of the nanodisc. The obtained distance between the globular domains of CYP3A4 is consistent with previously published theoretical calculations.


Assuntos
Citocromo P-450 CYP3A/química , Bicamadas Lipídicas/química , Nanoestruturas/química , Fosfatidilcolinas/química , Motivos de Aminoácidos , Domínio Catalítico , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Composição de Medicamentos , Expressão Gênica , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Nanoestruturas/ultraestrutura , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espalhamento a Baixo Ângulo , Difração de Raios X
9.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 2): 317-28, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24531466

RESUMO

Structural studies of membrane proteins remain a great experimental challenge. Functional reconstitution into artificial nanoscale bilayer disc carriers that mimic the native bilayer environment allows the handling of membrane proteins in solution. This enables the use of small-angle scattering techniques for fast and reliable structural analysis. The difficulty with this approach is that the carrier discs contribute to the measured scattering intensity in a highly nontrivial fashion, making subsequent data analysis challenging. Here, an elegant solution to circumvent the intrinsic complexity brought about by the presence of the carrier disc is presented. In combination with small-angle neutron scattering (SANS) and the D2O/H2O-based solvent contrast-variation method, it is demonstrated that it is possible to prepare specifically deuterated carriers that become invisible to neutrons in 100% D2O at the length scales relevant to SANS. These `stealth' carrier discs may be used as a general platform for low-resolution structural studies of membrane proteins using well established data-analysis tools originally developed for soluble proteins.


Assuntos
Deutério/química , Bicamadas Lipídicas/química , Proteínas de Membrana/química , Nêutrons , Fosfatidilcolinas/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Membrana/genética , Membranas Artificiais , Modelos Moleculares , Difração de Nêutrons , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Espalhamento a Baixo Ângulo
10.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 2): 371-83, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24531471

RESUMO

Monomeric bacteriorhodopsin (bR) reconstituted into POPC/POPG-containing nanodiscs was investigated by combined small-angle neutron and X-ray scattering. A novel hybrid approach to small-angle scattering data analysis was developed. In combination, these provided direct structural insight into membrane-protein localization in the nanodisc and into the protein-lipid interactions. It was found that bR is laterally decentred in the plane of the disc and is slightly tilted in the phospholipid bilayer. The thickness of the bilayer is reduced in response to the incorporation of bR. The observed tilt of bR is in good accordance with previously performed theoretical predictions and computer simulations based on the bR crystal structure. The result is a significant and essential step on the way to developing a general small-angle scattering-based method for determining the low-resolution structures of membrane proteins in physiologically relevant environments.


Assuntos
Proteínas Arqueais/química , Bacteriorodopsinas/química , Halobacterium/química , Fosfatidilcolinas/química , Fosfatidilgliceróis/química , Proteínas Arqueais/biossíntese , Proteínas Arqueais/isolamento & purificação , Bacteriorodopsinas/biossíntese , Bacteriorodopsinas/isolamento & purificação , Halobacterium/metabolismo , Bicamadas Lipídicas/química , Membranas Artificiais , Modelos Moleculares , Difração de Nêutrons , Conformação Proteica , Espalhamento a Baixo Ângulo , Difração de Raios X
11.
Phys Chem Chem Phys ; 13(8): 3161-70, 2011 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-21152549

RESUMO

Nanodiscs™ consist of small phospholipid bilayer discs surrounded and stabilized by amphiphilic protein belts. Nanodiscs and their confinement and stabilization of nanometer sized pieces of phospholipid bilayer are highly interesting from a membrane physics point of view. We demonstrate how the detailed structure of Di-Lauroyl-Phosphatidyl Choline (DLPC) nanodiscs may be determined by simultaneous fitting of a structural model to small-angle scattering data from the nanodiscs as investigated in three different contrast situations, respectively two SANS contrasts and one SAXS contrast. The article gives a detailed account of the underlying structural model for the nanodiscs and describe how additional chemical and biophysical information can be incorporated in the model in terms of molecular constraints. We discuss and quantify the contribution from the different elements of the structural model and provide very strong experimental support for the nanodiscs as having an elliptical cross-section and with poly-histidine tags protruding out from the rim of the protein belt. The analysis also provides unprecedented information about the structural conformation of the phospholipids when these are localized in the nanodiscs. The model paves the first part of the way in order to reach our long term goal of using the nanodiscs as a platform for small-angle scattering based structural investigations of membrane proteins in solution.


Assuntos
Nanoestruturas/química , Fosfolipídeos/química , Espalhamento a Baixo Ângulo , Modelos Moleculares , Modelos Teóricos , Fosfatidilcolinas/química , Difração de Raios X
12.
J Am Chem Soc ; 132(39): 13713-22, 2010 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-20828154

RESUMO

Phospholipid bilayers host and support the function of membrane proteins and may be stabilized in disc-like nanostructures, allowing for unprecedented solution studies of the assembly, structure, and function of membrane proteins (Bayburt et al. Nano Lett. 2002, 2, 853-856). Based on small-angle neutron scattering in combination with variable-temperature studies of synchrotron small-angle X-ray scattering on nanodiscs in solution, we show that the fundamental nanodisc unit, consisting of a lipid bilayer surrounded by amphiphilic scaffold proteins, possesses intrinsically an elliptical shape. The temperature dependence of the curvature of the nanodiscs prepared with two different phospholipid types (DLPC and POPC) shows that it is the scaffold protein that determines the overall elliptical shape and that the nanodiscs become more circular with increasing temperature. Our data also show that the hydrophobic bilayer thickness is, to a large extent, dictated by the scaffolding protein and adjusted to minimize the hydrophobic mismatch between protein and phospholipid. Our conclusions result from a new comprehensive and molecular-based model of the nanodisc structure and the use of this to analyze the experimental scattering profile from nanodiscs. The model paves the way for future detailed structural studies of functional membrane proteins encapsulated in nanodiscs.


Assuntos
Bicamadas Lipídicas/química , Proteínas de Membrana/química , Nanoestruturas/química , Fosfolipídeos/química , Modelos Moleculares , Modelos Teóricos , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA