Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Periodontal Res ; 59(3): 512-520, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38243688

RESUMO

BACKGROUND: Periodontitis is a chronic inflammatory disease defined by the pathologic loss of the periodontal ligament and alveolar bone in relation to aging. Although clinical cohort studies reported that periodontitis is significantly elevated in males compared to females, emerging evidence indicates that females with dementia are at a greater risk for periodontitis and decreased alveolar bone. OBJECTIVE: This study aimed to evaluate whether dementia is a potential sex-dependent risk factor for periodontal bone loss using an experimental model of periodontitis induced in the triple transgenic (3x-Tg) dementia-like mice and clinical samples collected from senior 65 plus age patients with diagnosed dementia. MATERIALS AND METHODS: We induced periodontitis in dementia-like triple-transgenic (3x-Tg) male and female mice and age-matched wild-type (WT) control mice by ligature placement. Then, alveolar bone loss and osteoclast activity were evaluated using micro-CT and in situ imaging assays. In addition, we performed dental examinations on patients with diagnosed dementia. Finally, dementia-associated Aß42 and p-Tau (T181) and osteoclastogenic receptor activator of nuclear factor kappa-Β ligand (RANKL) in gingival crevicular fluid (GCF) collected from mice and clinical samples were measured by enzyme-linked immunosorbent assay (ELISA). RESULTS: Alveolar bone loss and in situ osteoclast activity were significantly elevated in periodontal lesions of 3x-Tg females but not males, compared to wild-type control mice. In addition, we also observed that the probing pocket depth (PPD) was also significantly elevated in female patients with dementia. Using ELISA assay, we observed that females had elevated levels of osteoclastogenic RANKL and dementia-associated Aß42 and p-Tau (T181) in the GCF collected from experimental periodontitis lesions and clinical samples. CONCLUSION: Altogether, we demonstrate that females with dementia have an increased risk for periodontal bone loss compared to males.


Assuntos
Perda do Osso Alveolar , Demência , Modelos Animais de Doenças , Camundongos Transgênicos , Periodontite , Ligante RANK , Animais , Feminino , Perda do Osso Alveolar/patologia , Perda do Osso Alveolar/diagnóstico por imagem , Perda do Osso Alveolar/metabolismo , Masculino , Camundongos , Demência/etiologia , Humanos , Idoso , Ligante RANK/análise , Ligante RANK/metabolismo , Fatores Sexuais , Periodontite/complicações , Periodontite/patologia , Microtomografia por Raio-X , Osteoclastos/patologia , Peptídeos beta-Amiloides/metabolismo , Líquido do Sulco Gengival/química , Fragmentos de Peptídeos/análise , Fatores de Risco
2.
Front Cell Neurosci ; 17: 1176676, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37234915

RESUMO

Maternal antibiotics administration (MAA) is among the widely used therapeutic approaches in pregnancy. Although published evidence demonstrates that infants exposed to antibiotics immediately after birth have altered recognition memory responses at one month of age, very little is known about in utero effects of antibiotics on the neuronal function and behavior of children after birth. Therefore, this study aimed to evaluate the impact of MAA at different periods of pregnancy on memory decline and brain structural alterations in young mouse offspring after their first month of life. To study the effects of MAA on 4-week-old offspring, pregnant C57BL/6J mouse dams (2-3-month-old; n = 4/group) were exposed to a cocktail of amoxicillin (205 mg/kg/day) and azithromycin (51 mg/kg/day) in sterile drinking water (daily/1 week) during either the 2nd or 3rd week of pregnancy and stopped after delivery. A control group of pregnant dams was exposed to sterile drinking water alone during all three weeks of pregnancy. Then, the 4-week-old offspring mice were first evaluated for behavioral changes. Using the Morris water maze assay, we revealed that exposure of pregnant mice to antibiotics at the 2nd and 3rd weeks of pregnancy significantly altered spatial reference memory and learning skills in their offspring compared to those delivered from the control group of dams. In contrast, no significant difference in long-term associative memory was detected between offspring groups using the novel object recognition test. Then, we histologically evaluated brain samples from the same offspring individuals using conventional immunofluorescence and electron microscopy assays. To our knowledge, we observed a reduction in the density of the hippocampal CA1 pyramidal neurons and hypomyelination in the corpus callosum in groups of mice in utero exposed to antibiotics at the 2nd and 3rd weeks of gestation. In addition, offspring exposed to antibiotics at the 2nd or 3rd week of gestation demonstrated a decreased astrocyte cell surface area and astrocyte territories or depletion of neurogenesis in the dentate gyrus and hippocampal synaptic loss, respectively. Altogether, this study shows that MAA at different times of pregnancy can pathologically alter cognitive behavior and brain development in offspring at an early age after weaning.

3.
Stem Cell Reports ; 18(8): 1643-1656, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37236198

RESUMO

Neuronal loss and axonal demyelination underlie long-term functional impairments in patients affected by brain disorders such as ischemic stroke. Stem cell-based approaches reconstructing and remyelinating brain neural circuitry, leading to recovery, are highly warranted. Here, we demonstrate the in vitro and in vivo production of myelinating oligodendrocytes from a human induced pluripotent stem cell (iPSC)-derived long-term neuroepithelial stem (lt-NES) cell line, which also gives rise to neurons with the capacity to integrate into stroke-injured, adult rat cortical networks. Most importantly, the generated oligodendrocytes survive and form myelin-ensheathing human axons in the host tissue after grafting onto adult human cortical organotypic cultures. This lt-NES cell line is the first human stem cell source that, after intracerebral delivery, can repair both injured neural circuitries and demyelinated axons. Our findings provide supportive evidence for the potential future use of human iPSC-derived cell lines to promote effective clinical recovery following brain injuries.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Ratos , Adulto , Animais , Diferenciação Celular/fisiologia , Neurônios , Oligodendroglia/metabolismo , Axônios/fisiologia , Bainha de Mielina/fisiologia
4.
Front Cell Neurosci ; 17: 1132114, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37252190

RESUMO

The multifunctional molecules mechanistic target of rapamycin (mTOR) and α-ketoglutarate (αKG) are crucial players in the regulatory mechanisms that maintain cell homeostasis in an ever-changing environment. Cerebral ischemia is associated primarily with oxygen-glucose deficiency (OGD) due to circulatory disorders. Upon exceeding a threshold of resistance to OGD, essential pathways of cellular metabolism can be disrupted, leading to damage of brain cells up to the loss of function and death. This mini-review focuses on the role of mTOR and αKG signaling in the metabolic homeostasis of brain cells under OGD conditions. Integral mechanisms concerning the relative cell resistance to OGD and the molecular basis of αKG-mediated neuroprotection are discussed. The study of molecular events associated with cerebral ischemia and endogenous neuroprotection is relevant for improving the effectiveness of therapeutic strategies.

5.
Front Cell Neurosci ; 17: 1072750, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36874212

RESUMO

Introduction: Adipose-derived multipotent mesenchymal stromal cells (ADSCs) are widely used for cell therapy, in particular for the treatment of diseases of the nervous system. An important issue is to predict the effectiveness and safety of such cell transplants, considering disorders of adipose tissue under age-related dysfunction of sex hormones production. The study aimed to investigate the ultrastructural characteristics of 3D spheroids formed by ADSCs of ovariectomized mice of different ages compared to age-matched controls. Methods: ADSCs were obtained from female CBA/Ca mice randomly divided into four groups: CtrlY-control young (2 months) mice, CtrlO-control old (14 months) mice, OVxY-ovariectomized young mice, and OVxO-ovariectomized old mice of the same age. 3D spheroids were formed by micromass technique for 12-14 days and their ultrastructural characteristics were estimated by transmission electron microscopy. Results and Discussion: The electron microscopy analysis of spheroids from CtrlY animals revealed that ADSCs formed a culture of more or less homogeneous in size multicellular structures. The cytoplasm of these ADSCs had a granular appearance due to being rich in free ribosomes and polysomes, indicating active protein synthesis. Extended electron-dense mitochondria with a regular cristae structure and a predominant condensed matrix were observed in ADSCs from CtrlY group, which could indicate high respiratory activity. At the same time, ADSCs from CtrlO group formed a culture of heterogeneous in size spheroids. In ADSCs from CtrlO group, the mitochondrial population was heterogeneous, a significant part was represented by more round structures. This may indicate an increase in mitochondrial fission and/or an impairment of the fusion. Significantly fewer polysomes were observed in the cytoplasm of ADSCs from CtrlO group, indicating low protein synthetic activity. The cytoplasm of ADSCs in spheroids from old mice had significantly increased amounts of lipid droplets compared to cells obtained from young animals. Also, an increase in the number of lipid droplets in the cytoplasm of ADSCs was observed in both the group of young and old ovariectomized mice compared with control animals of the same age. Together, our data indicate the negative impact of aging on the ultrastructural characteristics of 3D spheroids formed by ADSCs. Our findings are particularly promising in the context of potential therapeutic applications of ADSCs for the treatment of diseases of the nervous system.

6.
Metabolites ; 12(11)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36355110

RESUMO

Cysteine proteases obtained from the stem of pineapple or papaya latex, bromelain and papain, respectively, exhibit a broad spectrum of beneficial effects on human health. However, their effects on gut microbiota composition or dose-manner effects on the intestinal integrity of healthy tissue have not been evaluated. In this study, C57BL/6 young, healthy mice were fed bromelain or papain in a dose of 1 mg per animal/day for three consecutive days, followed by the assessment of digestive protein capacity, intestinal morphology and gut microbiota composition. Furthermore, a human reconstructed 3D tissue model EpiIntestinal (SMI-100) was used to study the effects of 1, 0.1 and 10 mg/mL doses of each enzyme on tissue integrity and mucosal permeability using TEER measurements and passage of Lucifer Yellow marker from the apical to the basolateral side of the mucosa. The results indicated that fruit proteases have the potential to modulate gut microbiota with decreasing abundance of Proteobacteria and increasing beneficial Akkermansia muciniphila. The enhancement of pancreatic trypsin was observed in bromelain and papain supplementation, while bromelain also increased the thickness of the ileal mucosa. Furthermore, an in vitro study showed a dose-dependent interruption in epithelial integrity, which resulted in increased paracellular permeability by the highest doses of enzymes. These findings define bromelain and papain as promising enzymatic supplementation for controlled enhancement of paracellular uptake when needed, together with beneficial effects on the gut microbiota.

7.
Regen Med ; 17(8): 533-546, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35638401

RESUMO

Background: The present research has been undertaken to study the therapeutic potential of mesenchymal stem cells (MSCs) for the treatment of neuroinflammation-induced cognitive disorders. Methods: Either umbilical cord or adipose MSCs were injected into mice treated with lipopolysaccharide. The mice were studied in behavioral tests, and their brains were examined by means of immunohistochemistry, electron microscopy and sandwich ELISA. Results: MSCs, introduced either intravenously or intraperitoneally, restored episodic memory of mice disturbed by inflammation, normalized nAChR and Aß1-42 levels and stimulated proliferation of neural progenitor cells in the brain. The effect of MSCs was observed for months, whereas that of MSC-conditioned medium was transient and stimulated an immune reaction. SDF-1α potentiated the effects of MSCs on the brain and memory. Conclusion: MSCs of different origins provide a long-term therapeutic effect in the treatment of neuroinflammation-induced episodic memory impairment.


Assuntos
Disfunção Cognitiva , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Animais , Disfunção Cognitiva/terapia , Camundongos , Doenças Neuroinflamatórias , Cordão Umbilical
8.
Front Nutr ; 9: 565051, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35252286

RESUMO

OBJECTIVE: This study aimed to investigate and compare the morphological and biochemical characteristics of the hippocampus and the spatial memory of young adult ApoE-/- mice on a standard chow diet, a low-fat diet (LFD), a high-fat diet (HFD), and an HFD supplemented with lingonberries. METHODS: Eight-week-old ApoE-/- males were divided into five groups fed standard chow (Control), an LFD (LF), an HFD (HF), and an HFD supplemented with whole lingonberries (HF+WhLB) or the insoluble fraction of lingonberries (HF+InsLB) for 8 weeks. The hippocampal cellular structure was evaluated using light microscopy and immunohistochemistry; biochemical analysis and T-maze test were also performed. Structural synaptic plasticity was assessed using electron microscopy. RESULTS: ApoE-/- mice fed an LFD expressed a reduction in the number of intact CA1 pyramidal neurons compared with HF+InsLB animals and the 1.6-3.8-fold higher density of hyperchromic (damaged) hippocampal neurons relative to other groups. The LF group had also morphological and biochemical indications of astrogliosis. Meanwhile, both LFD- and HFD-fed mice demonstrated moderate microglial activation and a decline in synaptic density. The consumption of lingonberry supplements significantly reduced the microglia cell area, elevated the total number of synapses and multiple synapses, and increased postsynaptic density length in the hippocampus of ApoE-/- mice, as compared to an LFD and an HFD without lingonberries. CONCLUSION: Our results suggest that, in contrast to the inclusion of fats in a diet, increased starch amount (an LFD) and reduction of dietary fiber (an LFD/HFD) might be unfavorable for the hippocampal structure of young adult (16-week-old) male ApoE-/- mice. Lingonberries and their insoluble fraction seem to provide a neuroprotective effect on altered synaptic plasticity in ApoE-/- animals. Observed morphological changes in the hippocampus did not result in notable spatial memory decline.

9.
BBA Adv ; 2: 100066, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37082603

RESUMO

Cerebral disorders are largely associated with impaired cellular metabolism, despite the regulatory mechanisms designed to ensure cell viability and adequate brain function. Mechanistic target of rapamycin (mTOR) signaling is one of the most crucial factors in the regulation of energy homeostasis and its imbalance is linked with a variety of neurodegenerative diseases. Recent advances in the metabolic pathways' modulation indicate the role of α-ketoglutarate (AKG) as a major signaling hub, additionally highlighting its anti-aging and neuroprotective properties, but the mechanisms of its action are not entirely clear. In this review, we analyzed the physiological and pathophysiological aspects of mTOR in the brain. We also discussed AKG's multifunctional properties, as well as mTOR/AKG-mediated functional communications in cellular metabolism. Thus, this article provides a broad overview of the mTOR/AKG-mediated signaling pathways, in the context of neurodegeneration and endogenous neuroprotection, with the aim to find novel therapeutic strategies.

10.
Mitochondrion ; 60: 59-69, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34303005

RESUMO

ß-Catenin signaling pathway regulates cardiomyocytes proliferation and differentiation, though its involvement in metabolic regulation of cardiomyocytes remains unknown. We used one-day-old mice with cardiac-specific knockout of ß-catenin and neonatal rat ventricular myocytes treated with ß-catenin inhibitor to investigate the role of ß-catenin metabolism regulation in perinatal cardiomyocytes. Transcriptomics of perinatal ß-catenin-ablated hearts revealed a dramatic shift in the expression of genes involved in metabolic processes. Further analysis indicated an inhibition of lipolysis and glycolysis in both in vitro and in vivo models. Finally, we showed that ß-catenin deficiency leads to mitochondria dysfunction via the downregulation of Sirt1/PGC-1α pathway. We conclude that cardiac-specific ß-catenin ablation disrupts the energy substrate shift that is essential for postnatal heart maturation, leading to perinatal lethality of homozygous ß-catenin knockout mice.


Assuntos
Metabolismo Energético/genética , Metabolismo Energético/fisiologia , Deleção de Genes , Mitocôndrias/metabolismo , Miócitos Cardíacos/metabolismo , beta Catenina/metabolismo , Animais , Animais Recém-Nascidos , Regulação para Baixo , Camundongos , Camundongos Knockout , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo , beta Catenina/genética
12.
Stem Cells Transl Med ; 9(11): 1365-1377, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32602201

RESUMO

Several neurodegenerative diseases cause loss of cortical neurons, leading to sensory, motor, and cognitive impairments. Studies in different animal models have raised the possibility that transplantation of human cortical neuronal progenitors, generated from pluripotent stem cells, might be developed into a novel therapeutic strategy for disorders affecting cerebral cortex. For example, we have shown that human long-term neuroepithelial-like stem (lt-NES) cell-derived cortical neurons, produced from induced pluripotent stem cells and transplanted into stroke-injured adult rat cortex, improve neurological deficits and establish both afferent and efferent morphological and functional connections with host cortical neurons. So far, all studies with human pluripotent stem cell-derived neurons have been carried out using xenotransplantation in animal models. Whether these neurons can integrate also into adult human brain circuitry is unknown. Here, we show that cortically fated lt-NES cells, which are able to form functional synaptic networks in cell culture, differentiate to mature, layer-specific cortical neurons when transplanted ex vivo onto organotypic cultures of adult human cortex. The grafted neurons are functional and establish both afferent and efferent synapses with adult human cortical neurons in the slices as evidenced by immuno-electron microscopy, rabies virus retrograde monosynaptic tracing, and whole-cell patch-clamp recordings. Our findings provide the first evidence that pluripotent stem cell-derived neurons can integrate into adult host neural networks also in a human-to-human grafting situation, thereby supporting their potential future clinical use to promote recovery by neuronal replacement in the patient's diseased brain.


Assuntos
Células-Tronco Pluripotentes Induzidas/transplante , Neurônios/metabolismo , Animais , Diferenciação Celular , Humanos , Masculino , Ratos , Ratos Sprague-Dawley
13.
Proc Natl Acad Sci U S A ; 117(16): 9094-9100, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32253308

RESUMO

Stem cell transplantation can improve behavioral recovery after stroke in animal models but whether stem cell-derived neurons become functionally integrated into stroke-injured brain circuitry is poorly understood. Here we show that intracortically grafted human induced pluripotent stem (iPS) cell-derived cortical neurons send widespread axonal projections to both hemispheres of rats with ischemic lesions in the cerebral cortex. Using rabies virus-based transsynaptic tracing, we find that at 6 mo after transplantation, host neurons in the contralateral somatosensory cortex receive monosynaptic inputs from grafted neurons. Immunoelectron microscopy demonstrates myelination of the graft-derived axons in the corpus callosum and that their terminals form excitatory, glutamatergic synapses on host cortical neurons. We show that the stroke-induced asymmetry in a sensorimotor (cylinder) test is reversed by transplantation. Light-induced inhibition of halorhodopsin-expressing, grafted neurons does not recreate the impairment, indicating that its reversal is not due to neuronal activity in the graft. However, we find bilateral decrease of motor performance in the cylinder test after light-induced inhibition of either grafted or endogenous halorhodopsin-expressing cortical neurons, located in the same area, and after inhibition of endogenous halorhodopsin-expressing cortical neurons by exposure of their axons to light on the contralateral side. Our data indicate that activity in the grafted neurons, probably mediated through transcallosal connections to the contralateral hemisphere, is involved in maintaining normal motor function. This is an example of functional integration of efferent projections from grafted neurons into the stroke-affected brain's neural circuitry, which raises the possibility that such repair might be achievable also in humans affected by stroke.


Assuntos
Células-Tronco Pluripotentes Induzidas/fisiologia , Infarto da Artéria Cerebral Média/terapia , Atividade Motora/fisiologia , Neurônios/transplante , Córtex Somatossensorial/fisiopatologia , Potenciais de Ação/fisiologia , Animais , Técnicas de Observação do Comportamento , Comportamento Animal/fisiologia , Diferenciação Celular/fisiologia , Linhagem Celular , Modelos Animais de Doenças , Humanos , Infarto da Artéria Cerebral Média/etiologia , Infarto da Artéria Cerebral Média/patologia , Infarto da Artéria Cerebral Média/fisiopatologia , Masculino , Neurônios/fisiologia , Optogenética , Técnicas de Patch-Clamp , Ratos , Recuperação de Função Fisiológica , Córtex Somatossensorial/citologia , Córtex Somatossensorial/patologia
14.
Nutr Neurosci ; 23(8): 600-612, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30353787

RESUMO

Lingonberries (LB) have been shown to have beneficial metabolic effects, which is associated with an altered gut microbiota. This study investigated whether the LB-induced improvements were associated with altered gut- and neuroinflammatory markers, as well as cognitive performance in ApoE-/- mice fed high-fat (HF) diets. Whole LB, as well as two separated fractions of LB were investigated. Eight-week-old male ApoE-/- mice were fed HF diets (38% kcal) containing whole LB (wLB), or the insoluble (insLB) and soluble fractions (solLB) of LB for 8 weeks. Inclusion of wLB and insLB fraction reduced weight gain, reduced fat deposition and improved glucose response. Both wLB and insLB fraction also changed the caecal microbiota composition and reduced intestinal S100B protein levels. The solLB fraction mainly induced weight loss in the mice. There were no significant changes in spatial memory, but significant increases in synaptic density in the hippocampus were observed in the brain of mice-fed wLB and insLB. Thus, this study shows that all lingonberry fractions counteracted negative effects of HF feedings on metabolic parameters. Also, wLB and insLB fraction showed to potentially improve brain function in the mice.


Assuntos
Encéfalo/efeitos dos fármacos , Encefalite/prevenção & controle , Gastrite/prevenção & controle , Microbioma Gastrointestinal/efeitos dos fármacos , Extratos Vegetais/administração & dosagem , Vaccinium vitis-Idaea , Animais , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/efeitos dos fármacos , Dieta Hiperlipídica , Ácidos Graxos Voláteis , Metabolismo dos Lipídeos , Masculino , Camundongos Knockout para ApoE , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismo , Sinapses/efeitos dos fármacos
15.
Cell Biol Int ; 42(10): 1423-1431, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30022566

RESUMO

Glycine receptors (GlyRs) belong to the family of ligand-gated cys-loop receptors and effectuate fast inhibitory neurotransmission in central nervous system (CNS). They are involved in numerous physiological processes, such as movement, respiration, and processing of sensory information, as well as in regulation of neuronal excitability in different brain regions. GlyRs play important role in the maintenance of excitatory/inhibitory balance in the hippocampus and participate in the development of various brain pathologies. In the present study, we have examined a surface expression of GlyRs by pyramidal neurons and astrocytes in control and after 30 min of oxygen-glucose deprivation (OGD) in the organotypic culture of hippocampal slices. Our investigation has demonstrated a decrease in GlyR-positive staining associated with pyramidal neurons and relative stability of GlyRs expression at the surface of astrocytes 4 hs after OGD. These data indicate that GlyRs dysfunction may represent a significant additional factor leading to enhanced neuronal damage induced by OGD. Pharmacological modulation of GlyRs is a promising venue of research for the correction of negative consequences of oxygen-glucose deficiency.


Assuntos
Região CA1 Hipocampal/metabolismo , Células Piramidais/metabolismo , Receptores de Glicina/metabolismo , Animais , Glucose/metabolismo , Hipocampo/metabolismo , Hipóxia/metabolismo , Neurônios/metabolismo , Oxigênio/metabolismo , Ratos , Ratos Wistar
16.
Cell Biol Int ; 41(10): 1119-1126, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28708281

RESUMO

Neurodegenerative diseases of different genesis are the result of cellular damages including those caused by oxygen and glucose deficit. Neuronal survival or death in brain pathologies depends on a variety of interrelated molecular mechanisms. A key role in modulation of neuron viability belongs to HIF (hypoxia-inducible factor) and NCAM (neural cell adhesion molecules) signaling pathways. In this work, we used organotypic and dissociated hippocampal cultures to analyze cell viability and HIF-1α immunopositive (HIF-1α+ ) signal after 30 min oxygen-glucose deprivation (OGD) followed by 24 h of reoxygenation in the presence of FGL (synthetic NCAM-derived mimetic peptide). According to LDH- and MTS-assay of cell viability, FGL showed a neuroprotective effect, which was attributed to the association with FGFR. We showed that these effects correlated with changes of the HIF-1α+ level suggesting the communications of HIF and NCAM signaling pathways. These data extend our knowledge of neurodegeneration mechanisms and open additional potential for the development of neuroprotection strategies.


Assuntos
Hipóxia Celular/fisiologia , Glucose/deficiência , Hipocampo/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Moléculas de Adesão de Célula Nervosa/metabolismo , Animais , Animais Recém-Nascidos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Glucose/metabolismo , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , Oxigênio/metabolismo , Fosforilação , Ratos , Ratos Wistar , Transdução de Sinais
17.
Anat Rec (Hoboken) ; 294(6): 1057-65, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21538930

RESUMO

Post-ischemic injury of the hippocampus unrolls at different levels and has both functional and structural implications. The deficiency in neuron energy metabolism is an initiating factor. We performed transmission electron microscopic (TEM) comparative analysis of mitochondria in excitatory spine synapses in CA1 stratum radiatum and CA3 hippocampal areas after 5 min of global cerebral ischemia in Mongolian gerbils, 4 and 7 days after reperfusion. Electron microscopy and unbiased morphometric methods were used to evaluate synaptic plasticity, and the number and size of mitochondria in synaptic terminals. We compared the morphological organization of mitochondria in presynaptic terminals between CA1 and CA3 areas in control and post-ischemic condition according to the following morphometric parameters: mitochondrial volume fraction, mitochondrial frequency in CA1 and CA3 terminals, mean number of mitochondria per presynaptic terminal, frequency of damaged mitochondria in terminals, and density of presynaptic terminals. Our ultrastructural study revealed statistically significant differences in morphometric parameters between CA1 and CA3 areas in control conditions, as well as in post-ischemic conditions. Also, we found temporal differences in measured parameters obtained 4 and 7 days after reperfusion. This study showed significant morphological differences in the organization of mitochondria in excitatory spine synapses between CA1 and CA3 areas, which corresponded with already known differences in functionality and sensitivity to the ischemic insult. Our conclusion is that revealed post-ischemic changes in mitochondrial distribution in presynaptic CA1 and CA3 terminals could be an indicator of hippocampal metabolic dysfunction and synaptic plasticity.


Assuntos
Isquemia Encefálica/patologia , Região CA1 Hipocampal/ultraestrutura , Região CA3 Hipocampal/ultraestrutura , Mitocôndrias/ultraestrutura , Células Piramidais/ultraestrutura , Animais , Gerbillinae , Masculino
18.
Vitam Horm ; 82: 107-27, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20472135

RESUMO

Brain plasticity describes the potential of the organ for adaptive changes involved in various phenomena in health and disease. A substantial amount of experimental evidence, received in animal and cell models, shows that a cascade of plastic changes at the molecular, cellular, and tissue levels, is initiated in different regions of the postischemic brain. Underlying mechanisms include neurochemical alterations, functional changes in excitatory and inhibitory synapses, axonal and dendritic sprouting, and reorganization of sensory and motor central maps. Multiple lines of evidence indicate numerous points in which the process of postischemic recovery may be influenced with the aim to restore the full capacity of the brain tissue injured by an ischemic episode.


Assuntos
Isquemia Encefálica/fisiopatologia , Encéfalo/fisiopatologia , Plasticidade Neuronal , Animais , Modelos Animais de Doenças , Humanos
19.
Anat Rec (Hoboken) ; 292(12): 1914-21, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19943345

RESUMO

Cerebral ischemic injury resulting from either focal or global circulatory arrests in the brain is one of the major causes of death and disability in the adult population. The hippocampus, playing important roles in learning and memory, is selectively vulnerable to ischemic insults. Distinct populations of hippocampal neurons are targeted by ischemia and multiple factors, including excitotoxicity, oxidative stress, and inflammation, are responsible for their damage and death. Modifications of synapses occur very early after ischemia, reflecting related changes in synaptic transmission. These modifications structurally relate to spatial patterns formed by synaptic vesicles, geometry of postsynaptic density, and so forth. Ischemia-induced changes of synaptic contacts can be implicated in the mechanisms leading to delayed neuronal death. In this review, we summarize the available data on the structural aspects of ischemic injury of the hippocampus obtained in tissue culture and animal models and discuss pathways of neurodegeneration common for cerebral ischemia and various neurodegenerative disorders.


Assuntos
Infarto Encefálico/patologia , Isquemia Encefálica/patologia , Hipocampo/patologia , Degeneração Neural/patologia , Animais , Infarto Encefálico/fisiopatologia , Isquemia Encefálica/fisiopatologia , Células Cultivadas , Modelos Animais de Doenças , Encefalite/etiologia , Encefalite/patologia , Encefalite/fisiopatologia , Hipocampo/fisiopatologia , Humanos , Degeneração Neural/etiologia , Degeneração Neural/fisiopatologia , Estresse Oxidativo/fisiologia , Sinapses/metabolismo , Sinapses/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA