Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
AoB Plants ; 14(6): plac052, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36439406

RESUMO

Spatial segregation of cytotypes reduces the negative effect of frequency-dependent mating on the fitness of minority cytotype(s) and thus allows its establishment and coexistence with the majority cytotype in mixed-ploidy populations. Despite its evolutionary importance, the stability of spatial segregation is largely unknown. Furthermore, closely related sympatric cytotypes that differ in their life histories might exhibit contrasting spatial dynamics over time. We studied the temporal stability of spatial structure at a secondary contact zone of co-occurring monocarpic diploids and polycarpic tetraploids of Centaurea stoebe, whose tetraploid cytotype has undergone a rapid range expansion in Europe and became invasive in North America. Eleven years after the initial screening, we re-assessed the microspatial distribution of diploids and tetraploids and their affinities to varying vegetation-cover density in three mixed-ploidy populations in Central Europe. We found that overall, spatial patterns and frequencies of both cytotypes in all sites were very similar over time, with one exception. At one site, in one previously purely 2x patch, diploids completely disappeared due to intensive succession by shrubby vegetation. The remaining spatial patterns, however, showed the same cytotype clumping and higher frequency of 2x despite subtle changes in vegetation-cover densities. In contrast to the expected expansion of polycarpic tetraploids having higher colonization ability when compared to diploids, the tetraploids remained confined to their former microsites and showed no spatial expansion. Spatial patterns of coexisting diploids and tetraploids, which exhibit contrasting life histories, did not change over more than a decade. Such temporal stability is likely caused by relatively stable habitat conditions and very limited seed dispersal. Our results thus imply that in the absence of a disturbance regime connected with frequent human- or animal-mediated seed dispersal, spatial patterns may be very stable over time, thus contributing to the long-term coexistence of cytotypes.

2.
Front Plant Sci ; 11: 588856, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33391302

RESUMO

Recurrent polyploid formation and weak reproductive barriers between independent polyploid lineages generate intricate species complexes with high diversity and reticulate evolutionary history. Uncovering the evolutionary processes that formed their present-day cytotypic and genetic structure is a challenging task. We studied the species complex of Cardamine pratensis, composed of diploid endemics in the European Mediterranean and diploid-polyploid lineages more widely distributed across Europe, focusing on the poorly understood variation in Central Europe. To elucidate the evolution of Central European populations we analyzed ploidy level and genome size variation, genetic patterns inferred from microsatellite markers and target enrichment of low-copy nuclear genes (Hyb-Seq), and environmental niche differentiation. We observed almost continuous variation in chromosome numbers and genome size in C. pratensis s.str., which is caused by the co-occurrence of euploid and dysploid cytotypes, along with aneuploids, and is likely accompanied by inter-cytotype mating. We inferred that the polyploid cytotypes of C. pratensis s.str. are both of single and multiple, spatially and temporally recurrent origins. The tetraploid Cardamine majovskyi evolved at least twice in different regions by autopolyploidy from diploid Cardamine matthioli. The extensive genome size and genetic variation of Cardamine rivularis reflects differentiation induced by the geographic isolation of disjunct populations, establishment of triploids of different origins, and hybridization with sympatric C. matthioli. Geographically structured genetic lineages identified in the species under study, which are also ecologically divergent, are interpreted as descendants from different source populations in multiple glacial refugia. The postglacial range expansion was accompanied by substantial genetic admixture between the lineages of C. pratensis s.str., which is reflected by diffuse borders in their contact zones. In conclusion, we identified an interplay of diverse processes that have driven the evolution of the species studied, including allopatric and ecological divergence, hybridization, multiple polyploid origins, and genetic reshuffling caused by Pleistocene climate-induced range dynamics.

3.
Ecol Evol ; 8(5): 2453-2470, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29531667

RESUMO

Tephroseris longifolia agg. is a complex group of outcrossing perennials distributed throughout Central Europe. Recent morphological study revealed six morphotypes corresponding to five previously distinguished subspecies, together with Alpine and Pannonian morphotypes of T. longifolia subsp. longifolia. The delimited morphotypes differ in relative DNA content, geographical range, and rarity. We compared ecological niches of the six morphotypes in order to assess the impact of ecological differentiation on the speciation processes within the T. longifolia agg. Further, we examined whether morphotypes with small range are more ecologically specialized than their widespread relatives. The distribution area of the aggregate includes the Alps, Apennines, Carpathians, and the Pannonian Basin. Ecological variables linked to climate, topography, soil, and vegetation were gathered from 135 circular plots recorded in 35 localities. Related variables were grouped to describe the partial ecological niches: climatic, topographic, pedological, biotic, and coenotic (based either on vascular plants or on bryophytes), each of them visualized as an envelope in the two-dimensional nonmetric multidimensional scaling ordination space. Each partial ecological niche for a given morphotype was characterized by its position (location of the envelope centroid), breadth (surface of the envelope), and overlaps with envelopes of the other morphotypes. Mantel statistics based on Spearman correlation coefficients were used to quantify differentiation of morphotypes in ecological parameters represented by the partial ecological niches. The significant niche differentiation was confirmed for climatic, topographic, pedological, and vascular plant-based coenotic niches. Ecological niche differentiation corresponded well to morphological and partially also to karyological differentiation. Narrowly distributed morphotypes occupied more specific habitats and had narrower ecological niches than their widespread relatives. Ecological differentiation could be considered an important driver in allopatric speciation within the T. longifolia agg. Our results demonstrate that quantification of ecological divergence is helpful in assessing evolutionary history of closely related taxa.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA