Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 78(Pt 3 Pt 2): 485-489, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35702965

RESUMO

A modulated structure derived from the inverse Heusler phase (the XA-type and the disordered variant L21B-type) has been observed in rapidly quenched Mn2RuSn ribbons. The powder X-ray diffraction pattern of the quenched ribbons can be indexed as an L21B-type structure. Electron diffraction patterns of the new structure mostly resemble those of the XA-type (and the disordered variant L21B-type) structure and additional reflections with denser spacing indicate a long periodicity. Orthogonal domains of the modulated structure were revealed by a selected-area electron diffraction pattern and the corresponding dark-field transmission electron microscopy images. The structure was further studied by the crystallographic analysis of high-resolution transmission electron microscopy images. A model for the modulated structure has been proposed to interpret the experimental results.


Assuntos
Microscopia Eletrônica de Transmissão , Cristalografia , Difração de Raios X
2.
Phys Rev Lett ; 124(5): 057201, 2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-32083901

RESUMO

Magnets with chiral crystal structures and helical spin structures have recently attracted much attention as potential spin-electronics materials, but their relatively low magnetic-ordering temperatures are a disadvantage. While cobalt has long been recognized as an element that promotes high-temperature magnetic ordering, most Co-rich alloys are achiral and exhibit collinear rather than helimagnetic order. Crystallographically, the B20-ordered compound CoSi is an exception due to its chiral structure, but it does not exhibit any kind of magnetic order. Here, we use nonequilibrium processing to produce B20-ordered Co_{1+x}Si_{1-x} with a maximum Co solubility of x=0.043. Above a critical excess-Co content (x_{c}=0.028), the alloys are magnetically ordered, and for x=0.043, a critical temperature T_{c}=328 K is obtained, the highest among all B20-type magnets. The crystal structure of the alloy supports spin spirals caused by Dzyaloshinskii-Moriya interactions, and from magnetic measurements we estimate that the spirals have a periodicity of about 17 nm. Our density-functional calculations explain the combination of high magnetic-ordering temperature and short periodicity in terms of a quantum phase transition where excess-cobalt spins are coupled through the host matrix.

3.
Nanomaterials (Basel) ; 9(10)2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31557827

RESUMO

The structural and magnetic properties of Co2Ge nanoparticles (NPs) prepared by the cluster-beam deposition (CBD) technique have been investigated. As-made particles with an average size of 5.5 nm exhibit a mixture of hexagonal and orthorhombic crystal structures. Thermomagnetic measurements showed that the as-made particles are superparamagnetic at room temperature with a blocking temperature (TB) of 20 K. When the particles are annealed at 823 K for 12 h, their size is increased to 13 nm and they develop a new orthorhombic crystal structure, with a Curie temperature (TC) of 815 K. This is drastically different from bulk, which are ferromagnetic at cryogenic temperatures only. X-ray diffraction (XRD) measurements suggest the formation of a new Co-rich orthorhombic phase (OP) with slightly increased c/a ratio in the annealed particles and this is believed to be the reason for the drastic change in their magnetic properties.

4.
Nanoscale ; 10(27): 13011-13021, 2018 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-29872821

RESUMO

The search for new magnetic materials with high magnetization and magnetocrystalline anisotropy is important for a wide range of applications including information and energy processing. There is only a limited number of naturally occurring magnetic compounds that are suitable. This situation stimulates an exploration of new phases that occur far from thermal-equilibrium conditions, but their stabilization is generally inhibited due to high positive formation energies. Here a nanocluster-deposition method has enabled the discovery of a set of new non-equilibrium Co-N intermetallic compounds. The experimental search was assisted by computational methods including adaptive-genetic-algorithm and electronic-structure calculations. Conventional wisdom is that the interstitial or substitutional solubility of N in Co is much lower than that in Fe and that N in Co in equilibrium alloys does not produce materials with significant magnetization and anisotropy. By contrast, our experiments identify new Co-N compounds with favorable magnetic properties including hexagonal Co3N nanoparticles with a high saturation magnetic polarization (Js = 1.28 T or 12.8 kG) and an appreciable uniaxial magnetocrystalline anisotropy (K1 = 1.01 MJ m-3 or 10.1 Mergs per cm3). This research provides a pathway for uncovering new magnetic compounds with computational efficiency beyond the existing materials database, which is significant for future technologies.

5.
Nanomaterials (Basel) ; 8(4)2018 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-29662035

RESUMO

In this work, we investigated the magnetic and structural properties of isolated Mn5Ge3 nanoparticles prepared by the cluster-beam deposition technique. Particles with sizes between 7.2 and 12.6 nm were produced by varying the argon pressure and power in the cluster gun. X-ray diffraction (XRD)and selected area diffraction (SAD) measurements show that the nanoparticles crystallize in the hexagonal Mn5Si3-type crystal structure, which is also the structure of bulk Mn5Ge3. The temperature dependence of the magnetization shows that the as-made particles are ferromagnetic at room temperature and have slightly different Curie temperatures. Hysteresis-loop measurements show that the saturation magnetization of the nanoparticles increases significantly with particle size, varying from 31 kA/m to 172 kA/m when the particle size increases from 7.2 to 12.6 nm. The magnetocrystalline anisotropy constant K at 50 K, determined by fitting the high-field magnetization data to the law of approach to saturation, also increases with particle size, from 0.4 × 105 J/m³ to 2.9 × 105 J/m³ for the respective sizes. This trend is mirrored by the coercivity at 50 K, which increases from 0.04 T to 0.13 T. A possible explanation for the magnetization trend is a radial Ge concentration gradient.

6.
Nanoscale ; 10(20): 9504-9508, 2018 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-29498385

RESUMO

Bulk magnetic materials with the noncentrosymmetric cubic B20 structure are fascinating due to skyrmion spin structures associated with Dzyaloshinskii-Moriya interactions, but the size of skyrmions are generally larger than 50 nm. The control of such spin structures in the 10 nm size ranges is essential to explore them for spintronics, ultra-high-density magnetic recording, and other applications. In this study, we have fabricated MnSi nanoparticles with average sizes of 9.7, 13.1 and 17.7 nm and investigated their structural and magnetic properties. X-ray diffraction and transmission electron microscope studies show that the MnSi nanoparticles crystallize in the cubic B20 structure. Field-dependent dc susceptibility data of the MnSi samples with average particle sizes of 17.7 and 13.1 nm show anomalies in limited field (about 25-400 Oe) and temperature (25 K-43 K) ranges. These features are similar to the signature of the skyrmion-like spin structures observed below the Curie temperature of MnSi. Our results also show that this anomalous behavior is size-dependent and suppressed in the smallest nanoparticles (9.7 nm), and this suppression is interpreted as a confinement effect that leads to a truncation of the skyrmion structure.

7.
ACS Omega ; 2(11): 7985-7990, 2017 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-31457349

RESUMO

Introducing magnetic behavior in nonmagnetic transition metal dichalcogenides is essential to broaden their applications in spintronic and nanomagnetic devices. In this article, we investigate the electronic and magnetic properties of transition-metal-intercalated tungsten diselenide (WSe2) using density functional theory. We find that intercalation compounds with composition of T1/4WSe2 (T is an iron-series transition-metal atom) exhibit substantial magnetic moments and pronounced ferromagnetic order for late transition metals. The densities of states of the T atoms and the magnetic moments on the W sites indicate that the moments of the intercalated atoms become more localized with increasing atomic number. A large perpendicular magnetocrystalline anisotropy of about 9 meV per supercell has been found for Fe1/4WSe2. Furthermore, using mean field theory, we estimated high Curie temperatures of 660, 475, and 379 K for Cr, Mn, and Fe, respectively. The predicted magnetic properties suggest that WSe2 may have applications in spin electronics and nanomagnetic devices.

8.
AIP Adv ; 6(5): 056002, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26937297

RESUMO

The role of B on the microstructure and magnetism of Zr16Co82.5-x Mo1.5B x ribbons prepared by arc melting and melt spinning is investigated. Microstructure analysis show that the ribbons consist of a hard-magnetic rhombohedral Zr2Co11 phase and a minor amount of soft-magnetic Co. We show that the addition of B increases the amount of hard-magnetic phase, reduces the amount of soft-magnetic Co and coarsens the grain size from about 35 nm to 110 nm. There is a monotonic increase in the volume of the rhombohedral Zr2Co11 unit cell with increasing B concentration. This is consistent with a previous theoretical prediction that B may occupy a special type of large interstitial sites, called interruption sites. The optimum magnetic properties, obtained for x = 1, are a saturation magnetization of 7.8 kG, a coercivity of 5.4 kOe, and a maximum energy product of 4.1 MGOe.

9.
Nano Lett ; 16(2): 1132-7, 2016 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-26756914

RESUMO

Mn-based silicides are fascinating due to their exotic spin textures and unique crystal structures, but the low magnetic ordering temperatures and/or small magnetic moments of bulk alloys are major impediments to their use in practical applications. In sharp contrast to bulk Mn5Si3, which is paramagnetic at room temperature and exhibits low-temperature antiferromagnetic ordering, we show ferromagnetic ordering in Mn5Si3 nanoparticles with a high Curie temperature (Tc ≈ 590 K). The Mn5Si3 nanoparticles have an average size of 8.6 nm and also exhibit large saturation magnetic polarizations (Js = 10.1 kG at 300 K and 12.4 kG at 3 K) and appreciable magnetocrystalline anisotropy constants (K1 = 6.2 Mergs/cm(3) at 300 K and at 12.8 Mergs/cm(3) at 3 K). The drastic change of the magnetic ordering and properties in the nanoparticles are attributed to low-dimensional and quantum-confinement effects, evident from first-principle density-functional-theory calculations.

10.
J Phys Condens Matter ; 28(6): 064002, 2016 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-26794410

RESUMO

Density-functional theory is used to investigate the phase-segregation behavior of two-dimensional transition-metal dichalcogenides, which are of current interest as beyond-graphene materials for optoelectronic and spintronic applications. Our focus is on the behavior of W1-x V x Se2 monolayers, whose end members are semiconducting WSe2 and ferromagnetic VSe2. The energetics favors phase segregation, but the spinodal decomposition temperature is rather low, about 420 K. The addition of V leads to a transition from a nonmagnetic semiconductor to a metallic ferromagnet, with a ferromagnetic moment of about 1.0 µ B per V atom. The transition is caused by a p-type doping mechanism, which shifts the Fermi level into the valence band. The finite-temperature structure and magnetism of the diselenide systems are discussed in terms of Onsager-type critical fluctuations and Bruggeman effective-medium behavior.

11.
J Chem Phys ; 142(10): 101921, 2015 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-25770510

RESUMO

The role of dipole-dipole interactions in the self-assembly of dipolar organic molecules on surfaces is investigated. As a model system, strongly dipolar model molecules, p-benzoquinonemonoimine zwitterions (ZI) of type C6H2(⋯ NHR)2(⋯ O)2 on crystalline coinage metal surfaces were investigated with scanning tunneling microscopy and first principles calculations. Depending on the substrate, the molecules assemble into small clusters, nano gratings, and stripes, as well as in two-dimensional islands. The alignment of the molecular dipoles in those assemblies only rarely assumes the lowest electrostatic energy configuration. Based on calculations of the electrostatic energy for various experimentally observed molecular arrangements and under consideration of computed dipole moments of adsorbed molecules, the electrostatic energy minimization is ruled out as the driving force in the self-assembly. The structures observed are mainly the result of a competition between chemical interactions and substrate effects. The substrate's role in the self-assembly is to (i) reduce and realign the molecular dipole through charge donation and back donation involving both the molecular HOMO and LUMO, (ii) dictate the epitaxial orientation of the adsorbates, specifically so on Cu(111), and (iii) inhibit attractive forces between neighboring chains in the system ZI/Cu(111), which results in regularly spaced molecular gratings.

12.
Sci Rep ; 4: 6265, 2014 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-25179756

RESUMO

Nanoscience has been one of the outstanding driving forces in technology recently, arguably more so in magnetism than in any other branch of science and technology. Due to nanoscale bit size, a single computer hard disk is now able to store the text of 3,000,000 average-size books, and today's high-performance permanent magnets--found in hybrid cars, wind turbines, and disk drives--are nanostructured to a large degree. The nanostructures ideally are designed from Co- and Fe-rich building blocks without critical rare-earth elements, and often are required to exhibit high coercivity and magnetization at elevated temperatures of typically up to 180 °C for many important permanent-magnet applications. Here we achieve this goal in exchange-coupled hard-soft composite films by effective nanostructuring of high-anisotropy HfCo7 nanoparticles with a high-magnetization Fe65Co35 phase. An analysis based on a model structure shows that the soft-phase addition improves the performance of the hard-magnetic material by mitigating Brown's paradox in magnetism, a substantial reduction of coercivity from the anisotropy field. The nanostructures exhibit a high room-temperature energy product of about 20.3 MGOe (161.5 kJ/m(3)), which is a record for a rare earth- or Pt-free magnetic material and retain values as high as 17.1 MGOe (136.1 kJ/m(3)) at 180°C.

13.
Small ; 10(20): 4118-22, 2014 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-25044862

RESUMO

Schematic AuCu/FeCo core-shell magnetic nanoparticles: FeCo shell is precisely synthesized on non-magnetic AuCu core to form the core/shell nanostructures. Due to the non-magnetic AuCu core, the FeCo shell exhibits a transition from single domain to magnetic vortex state.

14.
ACS Nano ; 8(8): 8113-20, 2014 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-25010729

RESUMO

Formation of chemically ordered compounds of Fe and Au is inhibited in bulk materials due to their limited mutual solubility. However, here we report the formation of chemically ordered L12-type Fe3Au and FeAu3 compounds in Fe-Au sub-10 nm nanoparticles, suggesting that they are equilibrium structures in size-constrained systems. The stability of these L12-ordered Fe3Au and FeAu3 compounds along with a previously discovered L10-ordered FeAu has been explained by a size-dependent equilibrium thermodynamic model. Furthermore, the spin ordering of these three compounds has been computed using ab initio first-principle calculations. All ordered compounds exhibit a substantial magnetization at room temperature. The Fe3Au had a high saturation magnetization of about 143.6 emu/g with a ferromagnetic spin structure. The FeAu3 nanoparticles displayed a low saturation magnetization of about 11 emu/g. This suggests a antiferromagnetic spin structure, with the net magnetization arising from uncompensated surface spins. First-principle calculations using the Vienna ab initio simulation package (VASP) indicate that ferromagnetic ordering is energetically most stable in Fe3Au, while antiferromagnetic order is predicted in FeAu and FeAu3, consistent with the experimental results.

15.
Nano Lett ; 14(3): 1362-8, 2014 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-24517293

RESUMO

The nanoscale structural, compositional, and magnetic properties are examined for annealed MnAu nanoclusters. The MnAu clusters order into the L1(0) structure, and monotonic size-dependences develop for the composition and lattice parameters, which are well reproduced by our density functional theory calculations. Simultaneously, Mn diffusion forms 5 Å nanoshells on larger clusters inducing significant magnetization in an otherwise antiferromagnetic system. The differing atomic mobilities yield new cluster nanostructures that can be employed generally to create novel physical properties.

16.
Adv Mater ; 25(42): 6090-3, 2013 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-24038456

RESUMO

Novel nanostructured Zr2 Co11 -based magnetic materials are fabricated in a single step process using cluster-deposition method. The composition, atomic ordering, and spin structure are precisely controlled to achieve a substantial magnetic remanence and coercivity, as well as the highest energy product for non-rare-earth and Pt-free permanent-magnet alloys.

17.
J Phys Condens Matter ; 25(3): 036003, 2013 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-23221372

RESUMO

First-principle calculations are employed to show that the magnetic structure of small atomic clusters of Co, formed on a crystalline W(110) surface and containing 3-12 atoms, strongly deviates from the usual stable ferromagnetism of Co in other systems. The clusters are ferri-, ferro- or non-magnetic, depending on cluster size and geometry. We determine the atomic Co moments and their relative alignment, and show that antiferromagnetic spin alignment in the Co clusters is caused by hybridization with the tungsten substrate and band filling. This is in contrast with the typical strong ferromagnetism of bulk Co alloys, and ferromagnetic coupling in Fe/W(110) clusters.


Assuntos
Cobalto/química , Imãs/química , Modelos Teóricos , Tungstênio/química , Ligas , Cristalografia por Raios X , Marcadores de Spin
18.
Nanoscale ; 4(24): 7704-11, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-23132145

RESUMO

A main challenge in understanding the defect ferromagnetism in dilute magnetic oxides is the direct experimental verification of the presence of a particular kind of defect and distinguishing its magnetic contributions from other defects. The magnetic effect of hydroxyls on TiO nanoclusters has been studied by measuring the evolution of the magnetic moment as a function of moisture exposure time, which increases the hydroxyl concentration. Our combined experiment and density-functional theory (DFT) calculations show that as dissociative water adsorption transforms oxygen vacancies into hydroxyls, the magnetic moment shows a significant increase. DFT calculations show that the magnetic moment created by hydroxyls arises from 3d orbitals of neighboring Ti sites predominantly from the top and second monolayers. The two nonequivalent hydroxyls contribute differently to the magnetic moment, which decreases as the separation of hydroxyls increases. This work illustrates the essential interplay among defect structure, local structural relaxation, charge redistribution, and magnetism. The microscopic differentiation and clarification of the specific roles of each kind of intrinsic defect is critical for the future applications of dilute magnetic oxides in spintronic or other multifunctional materials.

19.
Nano Lett ; 11(4): 1747-52, 2011 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-21361372

RESUMO

Rare-earth transition-metal (R-TM) alloys show superior permanent magnetic properties in the bulk, but the synthesis and application of R-TM nanoparticles remains a challenge due to the requirement of high-temperature annealing above about 800 °C for alloy formation and subsequent crystalline ordering. Here we report a single-step method to produce highly ordered R-TM nanoparticles such as YCo(5) and Y(2)Co(17), without high-temperature thermal annealing by employing a cluster-deposition system and investigate their structural and magnetic properties. The direct ordering is highly desirable to create and assemble R-TM nanoparticle building blocks for future permanent-magnet and other significant applications.


Assuntos
Magnetismo/instrumentação , Metais Terras Raras/química , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Desenho de Equipamento , Análise de Falha de Equipamento , Teste de Materiais , Tamanho da Partícula , Elementos de Transição/química
20.
ACS Nano ; 4(4): 1893-900, 2010 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-20359188

RESUMO

Core-shell structures of oxide nanoparticles having a high dielectric constant, and organic shells with large breakdown field are attractive candidates for large electrical energy storage applications. A high growth temperature, however, is required to obtain the dielectric oxide nanoparticles, which affects the process of core-shell formation and also leads to poor control of size, shape, and size-distribution. In this communication, we report a new synthetic process to grow core-shell nanoparticles by means of an experimental method that can be easily adapted to synthesize core-shell structures from a variety of inorganic-organic or inorganic-inorganic materials. Monodisperse and spherical TiO2 nanoparticles were produced at room temperature as a collimated cluster beam in the gas phase using a cluster-deposition source and subsequently coated with uniform paraffin nanoshells using in situ thermal evaporation, prior to deposition on substrates for further characterization and device processing. The paraffin nanoshells prevent the TiO2 nanoparticles from contacting each other and also act as a matrix in which the volume fraction of TiO2 nanoparticles was varied by controlling the thickness of the nanoshells. Parallel-plate capacitors were fabricated using dielectric core-shell nanoparticles having different shell thicknesses. With respect to the bulk paraffin, the effective dielectric constant of TiO2-paraffin core-shell nanoparticles is greatly enhanced with a decrease in the shell thickness. The capacitors show a minimum dielectric dispersion and low dielectric losses in the frequency range of 100 Hz-1 MHz, which are highly desirable for exploiting these core-shell nanoparticles for potential applications.


Assuntos
Nanopartículas/química , Parafina/química , Titânio/química , Impedância Elétrica , Microscopia Eletrônica de Transmissão , Tamanho da Partícula , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA