Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
Mol Med Rep ; 30(2)2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38904201

RESUMO

Estrogens are involved in a number of physiological functions, including in the development of the brain, growth, reproduction and metabolism. The biological actions of estrogens are achieved by binding to estrogen receptors (ERs) in numerous types of tissues. ERα and ERß belong to the nuclear receptor superfamily and the G­protein coupled ER1 (GPER1) is a membrane receptor. The primary biologically active estrogen, 17ß­estradiol demonstrates a high affinity for ERs. Mechanistically, estrogens bind to the ERs in the nucleus, and the complex then dimerize and bind to estrogen response elements (EREs) located in the promoter regions of the target genes. This is referred to as the genomic mechanism of ERs' function. Furthermore, ERs can also act through kinases and other molecular interactions leading to specific gene expression and functions, referred to as the non­genomic mechanism. While ERα and ERß exert their functions via both genomic and non­genomic pathways, GPER1 exerts its function primarily via the non­genomic pathways. Any aberrations in ER signaling can lead to one of a number of diseases such as disorders of growth and puberty, fertility and reproduction abnormalities, cancer, metabolic diseases or osteoporosis. In the present review, a focus is placed on three target tissues of estrogens, namely the bones, the breasts and the brain, as paradigms of the multiple facets of the ERs. The increasing prevalence of breast cancer, particularly hormone receptor­positive breast cancer, is a challenge for the development of novel antihormonal therapies other than tamoxifen and aromatase inhibitors, to minimize toxicity from the long treatment regimens in patients with breast cancer. A complete understanding of the mechanism of action of ERs in bones may highlight options for novel targeted treatments for osteoporosis. Likewise, the aging of the brain and related diseases, such as dementia and depression, are associated with a lack of estrogen, particularly in women following menopause. Furthermore, gender dysphoria, a discordance between experienced gender and biological sex, is commonly hypothesized to emerge due to discrepancies in cerebral and genital sexual differentiation. The exact role of ERs in gender dysphoria requires further research.


Assuntos
Osso e Ossos , Encéfalo , Receptores de Estrogênio , Transdução de Sinais , Humanos , Receptores de Estrogênio/metabolismo , Encéfalo/metabolismo , Osso e Ossos/metabolismo , Mama/metabolismo , Animais , Feminino , Estrogênios/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética
2.
Children (Basel) ; 11(5)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38790597

RESUMO

Childhood obesity has become a global epidemic, with significant increases in prevalence over recent decades. While excessive calorie consumption and physical inactivity are known factors, emerging research highlights the role of endocrine-disrupting chemicals (EDCs), particularly obesogens, in obesity's pathogenesis. This review explores the historical context of the environmental obesogens hypothesis, their sources, mechanism of action, impact on prenatal and postnatal development, and epigenetics. Additionally, it discusses the long-term consequences of childhood obesity and proposes prevention strategies that will mitigate negative health effects. Obesogens were found to disrupt hormonal balance and metabolic processes through various mechanisms such as altering gene expression, hormonal interference, and inflammation. Especially significant was exposure during critical windows of development, which correlates with an increased risk of obesity in childhood or adolescence. Long-term effects of childhood obesity include chronic health conditions and psychosocial issues. A comprehensive approach is necessary to address childhood obesity encompassing genetic, environmental, and lifestyle factors. Prevention strategies should focus on reducing obesogen exposure, promoting healthy lifestyles, and implementing regulatory policies. Future research should investigate obesogens-diet interactions, microbiome impacts, and combined obesogens effects. Long-term human studies are also crucial for validating findings from animal models and allowing for informed decision-making to combat the obesity pandemic.

3.
Mol Genet Metab Rep ; 39: 101083, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38694234

RESUMO

Selective screening for inherited metabolic disorders (IMD) began in Cyprus in 1990. Over the last thirty-three years 7388 patients were investigated for IMD and 200 diagnoses were made (diagnostic yield 2.7%). The existence of a single laboratory of Biochemical Genetics for the whole island facilitated the creation of a national registry for IMD. The minimal prevalence of IMD in Cyprus is 53.3 cases per 100,000 live births. The most common group are disorders of amino acid metabolism (41.0%), followed by disorders of carbohydrate metabolism (16.5%), disorders of complex molecule degradation (16.5%), mitochondrial disorders (10.5%) and disorders of vitamin and co-factor metabolism (5.5%). Hyperphenylalaninaemia is the most common IMD (14.0%) followed by galactosaemia (7.0%), glutaric aciduria type I (5.5%) and MSUD (4.0%). Some disorders were found to have a relatively high incidence in specific communities, for example Sandhoff disease among the Cypriot Maronites and GM1 gangliosidosis in one particular area of the island. Other disorders were found to have a relatively higher overall incidence, compared to other Caucasian populations, for example galactosaemia, glutaric aciduria type I and MSUD, while fatty acid oxidation defects, Gaucher disease and classic PKU were found to have a relatively lower incidence. Molecular characterization of selected disorders revealed many novel genetic variants, specific to the Cypriot population.

4.
Orphanet J Rare Dis ; 19(1): 167, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637882

RESUMO

The report covers the current and past activities of the department Molecular Genetics-Function and Therapy (MGFT) at the Cyprus Institute of Neurology and Genetics (CING), an affiliated Reference Center for the European Reference Network on Rare Endocrine Conditions (Endo-ERN).The presented data is the outcome of > 15 years long standing collaboration between MGFT and endocrine specialists from the local government hospitals and the private sector. Up-to-date > 2000 genetic tests have been performed for the diagnosis of inherited rare endocrine disorders. The major clinical entities included Congenital Adrenal Hyperplasia (CAH) due to pathogenic variants in CYP21A2 gene and Multiple Endocrine Neoplasia (MEN) type 2 due to pathogenic variants in the RET proto-oncogene. Other rare and novel pathogenic variants in ANOS1, WDR11, FGFR1, RNF216, and CHD7 genes were also found in patients with Congenital Hypogonadotropic Hypogonadism. Interestingly, a few patients with Disorders of Sexual Differentiation (DSD) shared rare pathogenic variants in the SRD5A2, HSD17B3 and HSD3B2 while patients with Glucose and Insulin Homeostasis carried theirs in GCK and HNF1A genes. Lastly, MGFT over the last few years has established an esteemed diagnostic and research program on premature puberty with emphasis on the implication of MKRN3 gene on the onset of the disease and the identification of other prognosis biomarkers.As an Endo-ERN member MGFT department belongs to this large European network and holds the same humanistic ideals which aim toward the improvements of health care for patients with rare endocrine conditions in respect to improved and faster diagnosis.


Assuntos
Hiperplasia Suprarrenal Congênita , Doenças do Sistema Endócrino , Neoplasia Endócrina Múltipla Tipo 2a , Humanos , Chipre , Neoplasia Endócrina Múltipla Tipo 2a/diagnóstico , Neoplasia Endócrina Múltipla Tipo 2a/genética , Doenças do Sistema Endócrino/diagnóstico , Doenças do Sistema Endócrino/genética , Hiperplasia Suprarrenal Congênita/diagnóstico , Hiperplasia Suprarrenal Congênita/genética , Testes Genéticos , Ubiquitina-Proteína Ligases , Esteroide 21-Hidroxilase/genética , Proteínas de Membrana/genética , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase
5.
Int J Mol Sci ; 24(21)2023 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-37958948

RESUMO

Human sexual and reproductive development is regulated by the hypothalamic-pituitary-gonadal (HPG) axis, which is primarily controlled by the gonadotropin-releasing hormone (GnRH) acting on its receptor (GnRHR). Dysregulation of the axis leads to conditions such as congenital hypogonadotropic hypogonadism (CHH) and delayed puberty. The pathophysiology of GnRHR makes it a potential target for treatments in several reproductive diseases and in congenital adrenal hyperplasia. GnRHR belongs to the G protein-coupled receptor family and its GnRH ligand, when bound, activates several complex and tissue-specific signaling pathways. In the pituitary gonadotrope cells, it triggers the G protein subunit dissociation and initiates a cascade of events that lead to the production and secretion of the luteinizing hormone (LH) and follicle-stimulating hormone (FSH) accompanied with the phospholipase C, inositol phosphate production, and protein kinase C activation. Pharmacologically, GnRHR can be modulated by synthetic analogues. Such analogues include the agonists, antagonists, and the pharmacoperones. The agonists stimulate the gonadotropin release and lead to receptor desensitization with prolonged use while the antagonists directly block the GnRHR and rapidly reduce the sex hormone production. Pharmacoperones include the most recent GnRHR therapeutic approaches that directly correct the misfolded GnRHRs, which are caused by genetic mutations and hold serious promise for CHH treatment. Understanding of the GnRHR's genomic and protein structure is crucial for the most appropriate assessing of the mutation impact. Such mutations in the GNRHR are linked to normosmic hypogonadotropic hypogonadism and lead to various clinical symptoms, including delayed puberty, infertility, and impaired sexual development. These mutations vary regarding their mode of inheritance and can be found in the homozygous, compound heterozygous, or in the digenic state. GnRHR expression extends beyond the pituitary gland, and is found in reproductive tissues such as ovaries, uterus, and prostate and non-reproductive tissues such as heart, muscles, liver and melanoma cells. This comprehensive review explores GnRHR's multifaceted role in human reproduction and its clinical implications for reproductive disorders.


Assuntos
Hipogonadismo , Síndrome de Klinefelter , Puberdade Tardia , Feminino , Masculino , Humanos , Receptores LHRH/genética , Receptores LHRH/metabolismo , Hipogonadismo/tratamento farmacológico , Hipogonadismo/genética , Hipogonadismo/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Hormônio Luteinizante/metabolismo , Hormônio Foliculoestimulante
6.
Front Endocrinol (Lausanne) ; 14: 1156616, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37324257

RESUMO

Objective: The study aimed to identify the pathogenic status of p.Gln319Ter (NM_000500.7: c.955C>T) variant when inherited in a single CYP21A2 gene (bimodular RCCX haplotype) and to discriminate between a non-causing congenital adrenal hyperplasia (CAH) allele when inherited in a duplicated and functional CYP21A2 gene context (trimodular RCCX haplotype). Methods: 38 females and 8 males with hyperandrogenemia, previously screened by sequencing and identified as carriers for the pathogenic p.Gln319Ter, were herein tested by multiplex ligation-dependent probe amplification (MLPA) and a real-time PCR Copy number Variation (CNV) assay. Results: Both MLPA and real-time PCR CNV analyses confirmed a bimodular and pathogenic RCCX haplotype with a single CYP21A2 in 19/46 (41.30%) p.Gln319Ter carriers and who in parallel all shared elevated 17-OHP levels. The remaining 27 individuals that also carried the p.Gln319Ter exhibited low 17-OHP levels as a result of their carriership of a duplicated CYP21A2 with a trimodular RCCX haplotype. Interestingly, all of these individuals also carried in linkage disequilibrium with p.Gln319Ter two single nucleotide polymorphisms, the c.293-79G>A (rs114414746) in intron 2 and the c.*12C>T (rs150697472) in the 3'-UTR. Therefore, these variants can be used to distinguish between pathogenic and non-pathogenic genomic contexts of the c.955T (p.Gln319) in the genetic diagnosis of congenital adrenal hyperplasia (CAH). Conclusion: The employed methodologies identified a considerable number of individuals with non-pathogenic p.Gln319Ter from the individuals that typically carry the pathogenic p.Gln319Ter in a single CYP21A2. Therefore, it is extremely important the detection of such haplotypes for the prenatal diagnosis, treatment and genetic counseling in patients with CAH.


Assuntos
Hiperplasia Suprarrenal Congênita , Masculino , Gravidez , Feminino , Humanos , Hiperplasia Suprarrenal Congênita/genética , Hiperplasia Suprarrenal Congênita/diagnóstico , Esteroide 21-Hidroxilase/genética , Variações do Número de Cópias de DNA , Haplótipos , Heterozigoto
7.
Life (Basel) ; 13(6)2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37374115

RESUMO

Multiple endocrine neoplasia type 2 (MEN2) is an autosomal dominant (AD) condition with very high penetrance and expressivity. It is characterized into three clinical entities recognized as MEN2A, MEN2B, and familial medullary thyroid carcinoma (FMTC). In both MEN2A and MEN2B, there is a manifestation of multicentric tumor formation in the major organs such as the thyroid, parathyroid, and adrenal glands where the RET proto-oncogene is expressed. The FMTC form differs from MEN2A and MEN2B, since medullary thyroid carcinoma (MTC) is the only feature observed. In this present brief report, we demonstrate a collection of RET proto-oncogene genotype data from countries around the Mediterranean Basin with variable characteristics. As expected, a great extent of the Mediterranean RET proto-oncogene genotype data resemble the data reported globally. Most interestingly, higher frequencies are observed in the Mediterranean region for specific pathogenic RET variants as a result of local prevalence. The latter can be explained by founder effect phenomena. The Mediterranean epidemiological data that are presented herein are very important for domestic patients, their family members' evaluation, and ultimately their treatment.

8.
Artigo em Inglês | MEDLINE | ID: mdl-37074092

RESUMO

Swyer syndrome is a rare congenital condition that serves as a risk factor for developing germ cell tumors. The condition belongs to the group of 46, XY Disorders of Sexual Development (DSD) is characterized by complete gonadal dysgenesis and is mostly manifested as delayed puberty and primary amenorrhea during adolescence. Individuals with Swyer syndrome are known to be phenotypically female with normal internal and external female genitalia at birth. 46, XY gonadal dysgenesis involves a high risk of gonadoblastoma development with malignant potential such that the onset is greatest at or after the event of puberty. This report of a 12-year-old phenotypic female with 46, XY gonadal dysgenesis, who developed an advanced metastatic seminoma, aims to emphasize the rarity of the development of a seminoma in the context of 46, XY CGD.

9.
Horm Res Paediatr ; 96(1): 25-33, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34814153

RESUMO

The infantile, childhood, and adolescent periods of growth and development also represent times of increased vulnerability to stressors. Growth velocity in each period is dependent on the interplay of genetic, environmental, dietary, socioeconomic, developmental, behavioral, nutritional, metabolic, biochemical, and hormonal factors. A stressor may impact growth directly through modulation of the growth hormone axis or indirectly through other factors. The adaptive response to stressors culminates in behavioral, physiological, and biochemical responses which together support survival and conservation of energy. The immediate response involves activation of the sympathetic nervous system and the hypothalamic-pituitary-adrenal axis. The time-limited stress response is at once antigrowth, antireproductive, and catabolic with no lasting adverse consequences. However, chronic activation of the stress system and hypercortisolism have consequential negative impacts on growth, thyroid function, reproduction-puberty, and metabolism. High cortisol suppresses growth hormone-insulin-like growth factor 1, hypothalamic-pituitary-gonadal, and thyroid axes and has been reported to be responsible for an increase in visceral adiposity, a decrease in lean mass, suppression of osteoblastic activity with risk of osteoporosis, and induction of insulin resistance. Early-life adversities, emotional or physical, have been associated with long-term negative physical and mental health outcomes. Existing models of chronic stress corroborate that early-life adversities can affect growth and have consequences in other aspects of well-being throughout the lifespan. Targeted interventions to reduce stress during infancy, childhood, and adolescence can have far-reaching benefits to long-term health as well as attaining adequate growth. In this review, we describe the neuroendocrinology of the stress response, the factors influencing growth, and the impact of chronic stress on growth during critical periods of infancy, childhood, and puberty with particular reference to growth, thyroid, and gonadal axis.


Assuntos
Sistema Hipotálamo-Hipofisário , Sistema Hipófise-Suprarrenal , Humanos , Criança , Adolescente , Hipófise , Puberdade , Hormônio do Crescimento , Estresse Fisiológico , Estresse Psicológico/metabolismo
10.
Hormones (Athens) ; 22(1): 71-77, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36264454

RESUMO

BACKGROUND: Genetic diversity of mutations in the CYP21A2 gene is the main cause of the monogenic congenital adrenal hyperplasia (CAH) disorder. On chromosome 6p21.3, the CYP21A2 gene is partially overlapped by the TNXB gene, the two residing in tandem with their highly homologous corresponding pseudogenes (CYP21A1P and TNXA), which leads to recurrent homologous recombination. METHODS AND RESULTS: In the present study, the genetic status of an ethnic Greek-Cypriot family, with a female neonate that was originally classified as male and manifested the salt-wasting (SW) form, is presented. Genetic defects in the CYP21A2 and TNXB genes were investigated by Sanger sequencing multiplex ligation-dependent probe amplification (MLPA) and a real-time PCR assay. The neonate carried in compound heterozygosity the TNXA/TNXB chimeric gene complex (termed CAH-X CH-1) that results in a contiguous CYP21A2 and TNXB deletion and in her second allele the pathogenic IVS2-13A/C > G (c.655A/C > G) in CYP21A2. CONCLUSIONS: The classic SW-CAH due to 21-hydroxylase (21-OH) deficiency may result from various complex etiological mechanisms and, as such, can involve the formation of monoallelic TNXA/TNXB chimeras found in trans with other CYP21A2 pathogenic variants. This is a rare case of CAH due to 21-hydroxylase deficiency, which elucidates the role of the complex RCCX CNV structure in the development of the disease. Identification of the correct CAH genotypes for a given phenotype is of considerable value in assisting clinicians in prenatal diagnosis, appropriate treatment, and genetic counseling.


Assuntos
Hiperplasia Suprarrenal Congênita , Masculino , Feminino , Humanos , Hiperplasia Suprarrenal Congênita/diagnóstico , Hiperplasia Suprarrenal Congênita/genética , Esteroide 21-Hidroxilase/genética , Fenótipo , Mutação , Tenascina/genética
11.
Int J Mol Med ; 49(1)2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34821371

RESUMO

Severe early­onset obesity is mainly attributed to single gene variations of the hypothalamic leptin­melanocortin system, which is critical for controlling the balance between appetite and energy expenditure. Adenylate cyclase 3 (ADCY3), a transmembrane enzyme localized in primary neuronal cilia, is a key genetic candidate, which appears to have an essential role in regulating body weight. The present study aimed to identify ADCY3 genetic variants in severely obese young patients of Greek­Cypriot origin by genomic sequencing. Apart from previously reported variants, the novel and probably pathogenic variant c.349T>A, causing a p.Leu117Met substitution within one of the two pseudo­symmetric halves of the transmembrane part of the protein, was reported. Molecular modelling analysis used to delineate bonding interactions within the mutated protein structure strongly suggested a change in interactive forces and energy levels affecting the pseudo­twofold symmetry of the transmembrane domain of the protein and probably its catalytic function. These results support the involvement of ADCY3 in the pathology of the disease and point towards the requirement of defining protein function and evaluating the clinical significance of the detected variants.


Assuntos
Adenilil Ciclases/química , Adenilil Ciclases/genética , Variação Genética , Obesidade/genética , Adolescente , Substituição de Aminoácidos , Chipre , Feminino , Humanos , Masculino , Modelos Moleculares , Adulto Jovem
12.
Front Endocrinol (Lausanne) ; 13: 1075341, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36714607

RESUMO

Makorin RING finger protein 3 (MKRN3) is an important factor located on chromosome 15 in the imprinting region associated with Prader-Willi syndrome. Imprinted MKRN3 is expressed in hypothalamic regions essential for the onset of puberty and mutations in the gene have been found in patients with central precocious puberty. The pubertal process is largely controlled by epigenetic mechanisms that include, among other things, DNA methylation at CpG dinucleotides of puberty-related genes. In the present study, we investigated the methylation status of the Mkrn3 promoter in the hypothalamus of the female mouse before, during and after puberty. Initially, we mapped the 32 CpG dinucleotides in the promoter, the 5'UTR and the first 50 nucleotides of the coding region of the Mkrn3 gene. Moreover, we identified a short CpG island region (CpG islet) located within the promoter. Methylation analysis using bisulfite sequencing revealed that CpG dinucleotides were methylated regardless of developmental stage, with the lowest levels of methylation being found within the CpG islet region. In addition, the CpG islet region showed significantly lower methylation levels at the pre-pubertal stage when compared with the pubertal or post-pubertal stage. Finally, in silico analysis of transcription factor binding sites on the Mkrn3 CpG islet identified the recruitment of 29 transcriptional regulators of which 14 were transcriptional repressors. Our findings demonstrate the characterization and differential methylation of the CpG dinucleotides located in the Mkrn3 promoter that could influence the transcriptional activity in pre-pubertal compared to pubertal or post-pubertal period. Further studies are needed to clarify the possible mechanisms and effects of differential methylation of the Mkrn3 promoter.


Assuntos
Metilação de DNA , Maturidade Sexual , Ubiquitina-Proteína Ligases , Animais , Feminino , Camundongos , Epigênese Genética , Hipotálamo/metabolismo , Maturidade Sexual/genética , Ubiquitina-Proteína Ligases/genética , Regiões Promotoras Genéticas
13.
Front Endocrinol (Lausanne) ; 12: 745048, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34630334

RESUMO

Background: Central precocious puberty (CPP) due to premature activation of GnRH secretion results in early epiphyseal fusion and to a significant compromise in the achieved final adult height. Currently, few genetic determinants of children with CPP have been described. In this translational study, rare sequence variants in MKRN3, DLK1, KISS1, and KISS1R genes were investigated in patients with CPP. Methods: Fifty-four index girls and two index boys with CPP were first tested by Sanger sequencing for the MKRN3 gene. All children found negative (n = 44) for the MKRN3 gene were further investigated by whole exome sequencing (WES). In the latter analysis, the status of variants in genes known to be related with pubertal timing was compared with an in-house Cypriot control cohort (n = 43). The identified rare variants were initially examined by in silico computational algorithms and confirmed by Sanger sequencing. Additionally, a genetic network for the MKRN3 gene, mimicking a holistic regulatory depiction of the crosstalk between MKRN3 and other genes was designed. Results: Three previously described pathogenic MKRN3 variants located in the coding region of the gene were identified in 12 index girls with CPP. The most prevalent pathogenic MKRN3 variant p.Gly312Asp was exclusively found among the Cypriot CPP cohort, indicating a founder effect phenomenon. Seven other CPP girls harbored rare likely pathogenic upstream variants in the MKRN3. Among the 44 CPP patients submitted to WES, nine rare DLK1 variants were identified in 11 girls, two rare KISS1 variants in six girls, and two rare MAGEL2 variants in five girls. Interestingly, the frequent variant rs10407968 (p.Gly8Ter) of the KISS1R gene appeared to be less frequent in the cohort of patients with CPP. Conclusion: The results of the present study confirm the importance of the MKRN3-imprinted gene in genetics of CPP and its key role in pubertal timing. Overall, the results of the present study have emphasized the importance of an approach that aligns genetics and clinical aspects, which is necessary for the management and treatment of CPP.


Assuntos
Puberdade Precoce/genética , Encefalopatias/epidemiologia , Encefalopatias/genética , Proteínas de Ligação ao Cálcio/genética , Criança , Pré-Escolar , Estudos de Coortes , Chipre/epidemiologia , Análise Mutacional de DNA , Feminino , Frequência do Gene , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Kisspeptinas/genética , Masculino , Proteínas de Membrana/genética , Mutação , Puberdade Precoce/epidemiologia , Receptores de Kisspeptina-1/genética , Ubiquitina-Proteína Ligases/genética , Sequenciamento do Exoma
14.
J Pediatr Endocrinol Metab ; 34(1): 131-136, 2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33180036

RESUMO

OBJECTIVES: 3ß-Hydroxysteroid dehydrogenase (3ß-HSD) deficiency is a rare type of congenital adrenal hyperplasia caused by recessive loss-of-function mutations in HSD3B2 gene. CASE PRESENTATION: We report an 8.5-year-old, 46XY, Roma boy with advanced adrenarche signs born to consanguineous parents. He was born at term with ambiguous genitalia. At 15 days of age, he underwent replacement therapy with hydrocortisone and fludrocortisone due to a salt wasting (SW) crisis and adrenal insufficiency. At 3.5 years, he was admitted again with SW crisis attributed to the low - unadjusted to body surface area - hydrocortisone dose and presented with bilateral gynecomastia and adrenarche. At 8.5 years, his bone age was four years more advanced than his chronological age and he was prepubertal, with very high testosterone levels. Gas chromatography-mass spectrometry (GC-MS) urinary steroid metabolome analysis revealed the typical steroid metabolic fingerprint of 3ß-HSD deficiency. Sequencing of the HSD3B2 gene identified in homozygosity the novel p.Lys36Ter nonsense mutation. Furthermore, this patient was found to be heterozygous for p.Val281Leu in the CYP21A2 gene. Both parents were identified as carriers of the p.Lys36Ter in HSD3B2. CONCLUSIONS: A novel nonsense p.Lys36Ter mutation in HSD3B2 was identified in a male patient with hypospadias. 3ß-HSD deficiency due to mutations in the HSD3B2 gene is extremely rare and the finding of a patient with this rare type of disorders of sex development (DSD) is one of the very few reported to date. The complexity of such diseases requires a multidisciplinary team approach regarding the diagnosis and follow-up.


Assuntos
Hiperplasia Suprarrenal Congênita/diagnóstico , Homozigoto , Metaboloma , Progesterona Redutase/deficiência , Progesterona Redutase/genética , Esteroides/urina , Hiperplasia Suprarrenal Congênita/enzimologia , Hiperplasia Suprarrenal Congênita/genética , Criança , Diagnóstico Tardio , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Masculino , Prognóstico
15.
Artigo em Inglês | MEDLINE | ID: mdl-32982993

RESUMO

Background: Congenital hypogonadotropic hypogonadism (CHH) is a rare genetic disease caused by Gonadotropin-Releasing Hormone (GnRH) deficiency. So far a limited number of variants in several genes have been associated with the pathogenesis of the disease. In this original research and review manuscript the retrospective analysis of known variants in ANOS1 (KAL1), RNF216, WDR11, FGFR1, CHD7, and POLR3A genes is described, along with novel variants identified in patients with CHH by the present study. Methods: Seven GnRH deficient unrelated Cypriot patients underwent whole exome sequencing (WES) by Next Generation Sequencing (NGS). The identified novel variants were initially examined by in silico computational algorithms and structural analysis of their predicted pathogenicity at the protein level was confirmed. Results: In four non-related GnRH males, a novel X-linked pathogenic variant in ANOS1 gene, two novel autosomal dominant (AD) probably pathogenic variants in WDR11 and FGFR1 genes and one rare AD probably pathogenic variant in CHD7 gene were identified. A rare autosomal recessive (AR) variant in the SRA1 gene was identified in homozygosity in a female patient, whilst two other male patients were also, respectively, found to carry novel or previously reported rare pathogenic variants in more than one genes; FGFR1/POLR3A and SRA1/RNF216. Conclusion: This report embraces the description of novel and previously reported rare pathogenic variants in a series of genes known to be implicated in the biological development of CHH. Notably, patients with CHH can harbor pathogenic rare variants in more than one gene which raises the hypothesis of locus-locus interactions providing evidence for digenic inheritance. The identification of such aberrations by NGS can be very informative for the management and future planning of these patients.


Assuntos
DNA Helicases/genética , Proteínas de Ligação a DNA/genética , Proteínas da Matriz Extracelular/genética , Hormônio Liberador de Gonadotropina/deficiência , Hipogonadismo/genética , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Proteínas Proto-Oncogênicas/genética , RNA Polimerase III/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Ubiquitina-Proteína Ligases/genética , Adolescente , Adulto , Idoso , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Mutação , Linhagem , Estudos Retrospectivos , Adulto Jovem
16.
Acta Biomed ; 91(3): e2020085, 2020 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-32921781

RESUMO

Polycystic ovarian syndrome is a common endocrinologic condition diagnosed in women of childbearing age. It is primarily associated with androgen excess and ovarian dysfunction, which contribute to menstrual irregularity, oligo-anovulation, infertility, hirsutism and acne. It is associated with several systemic conditions, including type 2 diabetes mellitus, cardiovascular disease, obesity and neuropsychological disorders. The exact pathophysiology and clinical features are highly variable and, thus, there is still controversy in defining the diagnostic criteria. In this review, we outline the main diagnostic criteria, discuss the mechanisms involved in the complex pathogenesis, and present the associated clinical manifestations and therapeutic management of the syndrome in adolescents.


Assuntos
Diabetes Mellitus Tipo 2 , Infertilidade , Síndrome do Ovário Policístico , Adolescente , Feminino , Hirsutismo , Humanos , Obesidade , Síndrome do Ovário Policístico/diagnóstico , Síndrome do Ovário Policístico/terapia
17.
Acta Biomed ; 91(1): 165-175, 2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-32191677

RESUMO

Over the last decade, we have witnessed a significant rise in the number of transgender young people seeking endocrine treatment, of which clinical service and gender dysphoria terminology have attempted to keep pace both in matching demand and better describing the condition. Although helpful guidelines for pubertal suppression and gender affirming hormones have been developed, uncertainties remain regarding treatment and monitoring during treatment, often because the clinical needs of the transgender population have outpaced medical expertise and training. Recently, multidisciplinary team work has evolved due to the increasing complexity of diagnostic and treatment decision-making and has been instrumental in creating a unique service with input from a range of specialists. In this article, the current approach in clinical management of adolescents with gender dysphoria is reviewed, with focus on the endocrine aspect of care in children and adolescents. Questions on what defines optimal clinical care of children and adolescents with gender dysphoria remain and should be the focus of future research.


Assuntos
Disforia de Gênero/terapia , Adolescente , Estrogênios/administração & dosagem , Disforia de Gênero/complicações , Disforia de Gênero/psicologia , Hormônio Liberador de Gonadotropina/análogos & derivados , Serviços de Saúde para Pessoas Transgênero , Humanos , Transtornos Mentais/complicações , Equipe de Assistência ao Paciente , Prevalência , Procedimentos de Readequação Sexual , Cirurgia de Readequação Sexual , Apoio Social , Testosterona/administração & dosagem , Pessoas Transgênero/psicologia
18.
Hormones (Athens) ; 19(3): 267-276, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32020566

RESUMO

Over the last decade, we have witnessed considerable progress in gender dysphoria (GD) terminology in an attempt to better describe the condition based on certain criteria. The ever-increasing social acceptance and destigmatization of children and adolescents with GD have resulted in an increased number of transgender individuals seeking endocrine care. In addition to terminology and diagnostic criteria, the tremendous progress of genetics and neuroimaging has enabled us to have a deeper understanding of the complex pathogenesis of GD. Although helpful guidelines for treatment with GnRH analogs and gender-affirming hormones have been proposed, several challenges and controversies still exist. In this article, the current knowledge about GD in adolescents is reviewed, with particular emphasis on terminology, clinical manifestations, and epidemiologic data. The neurobiological basis of the condition is presented, and both hormonal treatment and mental issues of transgender individuals are discussed. Undoubtedly, further research will optimize the diagnostic and therapeutic approach of children and adolescents with GD.


Assuntos
Disforia de Gênero , Hormônios Esteroides Gonadais/uso terapêutico , Hormônio Liberador de Gonadotropina/uso terapêutico , Pessoas Transgênero , Adolescente , Criança , Disforia de Gênero/tratamento farmacológico , Disforia de Gênero/epidemiologia , Disforia de Gênero/fisiopatologia , Disforia de Gênero/psicologia , Hormônio Liberador de Gonadotropina/análise , Humanos , Pessoas Transgênero/psicologia , Pessoas Transgênero/estatística & dados numéricos
19.
Artigo em Inglês | MEDLINE | ID: mdl-31636607

RESUMO

Background: Central Precocious Puberty (CPP) is clinically defined by the development of secondary sexual characteristics before the age of 8 years in girls and 9 years in boys. To date, mutations in the coding region of KISS1, KISS1R, PROKR2, DLK1, and MKRN3 genes have been reported as causative for CPP. This study investigated the presence of causative mutations in both the promoter and the 5'-UTR regions of the MKRN3 gene. Methods: Sanger DNA sequencing was used for screening the proximal promoter and 5'-UTR region of the MKRN3 gene in a group of 73 index girls with CPP. Mutations identified were cloned in luciferase reporter gene vectors and transiently transfected in GN11 cells in order to check for changes in the activity of the MKRN3 promoter. GN11 cells were previously checked for Mkrn3 expression using lentivirus mediated knock-down. In silico analysis was implemented for the detection of changes in the mRNA secondary structure of the mutated MKRN3 5'-UTR. Results: Three novel heterozygous mutations (-166, -865, -886 nt upstream to the transcription start site) located in the proximal promoter region of the MKRN3 gene were identified in six non-related girls with CPP. Four of these girls shared the -865 mutation, one the -166, and another one the -886. A 5'-UTR (+13 nt downstream to the transcription start site) novel mutation was also identified in a girl with similar clinical phenotype. Gene reporter assay evaluated the identified promoter mutations and demonstrated a significant reduction of MKRN3 promoter activity in transfected GN11 cells. In silico analysis for the mutated 5'-UTR predicted a significant change of the mRNA secondary structure. The minimum free energy (MFE) of the mutated 5'-UTR was higher when compared to the corresponding wild-type indicating less stable RNA secondary structure. Conclusion: Our findings demonstrated novel genetic alterations in the promoter and 5'-UTR regulatory regions of the MKRN3 gene. These changes add to another region to check for the etiology of CPP.

20.
Horm Metab Res ; 51(9): 586-594, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31505704

RESUMO

Congenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency (21-OHD) is caused by mutations in the CYP21A2 gene. The study refers to CAH patients of Greek-Cypriot ancestry between years 2007 and 2018. One hundred and twenty patients with various degrees of CAH were categorized and genotyped. The patients were categorized in 4 mutation groups based on their clinical and biochemical findings. The majority of patients (85.0%) belonged to the non-classic (NC)-CAH form and the disorder was more often diagnosed in females (71.7%). The most severe classic salt-wasting (SW) form was identified in 11 neonates (9.2%). Seven (5.8%) children were also identified with the simple virilizing (SV) form and a median presentation age of 5 years [interquartile range (IQR) 3.2-6.5]. In the 240 nonrelated alleles, the most frequent mutation was p.Val281Leu (60.0%) followed by c.655 A/C>G (IVS2-13A/C>G) (8.8%), p.Pro453Ser (5.8%), DelEx1-3 (4.6%), p.Val304Met (4.6%), and p.Gln318stop (4.2%). Other less frequent mutations including rare deletions were also identified. Following our recent report that the true carrier frequency of CYP21A2 in Greek-Cypriots is 1:10, this study reports that the CAH prevalence is predicted around 1.7 cases per 10 000 people. Therefore, the up-to-date 120 CAH patients identified by our group make only the 6.9% of the ones estimated (approximately 1750) to exist in the Greek Cypriot population. The compiled data from a coherent population such as the Greek-Cypriot could be valuable for the antenatal diagnosis, management and genetic counselling of the existing and prospect families with CAH.


Assuntos
Hiperplasia Suprarrenal Congênita/genética , Esteroide 21-Hidroxilase/genética , Hiperplasia Suprarrenal Congênita/enzimologia , Alelos , Criança , Pré-Escolar , Chipre , Feminino , Genótipo , Humanos , Lactente , Recém-Nascido , Masculino , Mutação , Mutação Puntual , Estudos Retrospectivos , Esteroide 21-Hidroxilase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA