Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 318: 124478, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-38788502

RESUMO

X-ray diffraction is a commonly used technique in the pharmaceutical industry for the determination of the atomic and molecular structure of crystals. However, it is costly, sometimes time-consuming, and it requires a considerable degree of expertise. Vibrational circular dichroism (VCD) spectroscopy resolves these limitations, while also exhibiting substantial sensitivity to subtle modifications in the conformation and molecular packaging in the solid state. This study showcases VCD's ability to differentiate between various crystal structures of the same molecule (polymorphs, cocrystals). We examined the most effective approach for producing high-quality spectra and unveiled the intricate link between structure and spectrum via quantum-chemical computations. We rigorously assessed, using alanine as a model compound, multiple experimental conditions on the resulting VCD spectra, with the aim of proposing an optimal and efficient procedure. The proposed approach, which yields reliable, reproducible, and artifact-free results with maximal signal-to-noise ratio, was then validated using a set comprising of three amino acids (serine, alanine, tyrosine), one hydroxy acid (tartaric acid), and a monosaccharide (ribose) to mimic active pharmaceutical components. Finally, the optimized approach was applied to distinguish three polymorphs of the antiviral drug sofosbuvir and its cocrystal with piperazine. Our results indicate that solid-state VCD is a prompt, cost-effective, and easy-to-use technique to identify crystal structures, demonstrating potential for application in pharmaceuticals. We also adapted the cluster and transfer approach to calculate the spectral properties of molecules in a periodic crystal environment. Our findings demonstrate that this approach reliably produces solid-state VCD spectra of model compounds. Although for large molecules with many atoms per unit cell, such as sofosbuvir, this approach has to be simplified and provides only a qualitative match, spectral calculations, and energy analysis helped us to decipher the observed differences in the experimental spectra of sofosbuvir.


Assuntos
Dicroísmo Circular , Cristalização , Sofosbuvir , Sofosbuvir/química , Vibração , Modelos Moleculares , Antivirais/química
2.
Acta Crystallogr E Crystallogr Commun ; 79(Pt 9): 769-776, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37693677

RESUMO

The crystal structures of two single-enanti-omer compounds, i.e. diphenyl [(R)-(+)-α-ethyl-benzyl-amido]-phosphate, C21H22NO3P or (C6H5O)2P(O)[NH-(R)-(+)CH(C2H5)(C6H5)] (I), and N-[(R)-(+)-α-ethyl-benz-yl]-P,P-di-phenyl-phosphinic amide, C21H22NOP or (C6H5)2P(O)[NH-R-(+)CH(C2H5)(C6H5)] (II), were studied. The different environments at the phospho-rus atoms, (O)2P(O)(N) and (C)2P(O)(N), allow the P=O/P-N bond strengths to be compared, as well as the N-H⋯O=P hydrogen-bond strengths, and P=O/N-H vibrations. The following characteristics related to diastereotopic C6H5O/C6H5 groups in I/II were considered: geometry parameters, contributions to the crystal packing, solution 13C/1H NMR chemical shifts, conformations, and NMR coupling constants. The phospho-rus-carbon coupling constants nJ PC (n = 2 and 3) in I and mJ PC (m = 1, 2, 3 and 4) in II were evaluated. For a comparative study, chiral analogous structures were retrieved from the Cambridge Structural Database (CSD) and their geometries and conformations are discussed.

3.
IUCrJ ; 10(Pt 2): 210-219, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36815712

RESUMO

The transformation processes of non-solvated ibrutinib into a series of halogenated benzene solvates are explored in detail here. The transformation was studied in real time by X-ray powder diffraction in a glass capillary. Crystal structures of chlorobenzene, bromobenzene and iodobenzene solvates are isostructural, whereas the structure of fluorobenzene solvate is different. Four different mechanisms for transformation were discovered despite the similarity in the chemical nature of the solvents and crystal structures of the solvates formed. These mechanisms include direct transformations and transformations with either a crystalline or an amorphous intermediate phase. The binding preference of each solvate in the crystal structure of the solvates was examined in competitive slurry experiments and further confirmed by interaction strength calculations. Overall, the presented system and online X-ray powder diffraction measurement provide unique insights into the formation of solvates.

4.
IUCrJ ; 9(Pt 4): 508-515, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35844478

RESUMO

The structure-property relations are examined for apremilast cocrystals and solvates in this work. A unique and large dataset of multicomponent crystal forms is presented including 7 cocrystals and 12 solvates. In total, 15 of the presented multicomponent forms and their crystal structures are published here for the first time. This dataset is unique owing to the extreme crystal packing similarity of all 19 crystal forms. This fact makes the evaluation of structure-property relations significantly easier and more precise since the differences in the crystal lattice arrangement are close to negligible. Properties of the guest molecules used here can be directly correlated with the macroscopic properties of the corresponding multicomponent forms. Interestingly, a considerable correlation was found between the intrinsic dissolution rate of the multicomponent forms and their solubility, as well as the solubility of their guest molecules in the dissolution medium. The latter is of particular interest as it can aid in the design of multicomponent forms with tuned properties.

5.
Int J Pharm ; 622: 121854, 2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35623488

RESUMO

The aim of this study was to improve rivaroxaban water-solubility by cocrystal preparation and to understand this process. The screening with water-soluble coformers was performed via both mechanochemical and solution-mediated techniques. Two cocrystals of rivaroxaban with malonic acid and oxalic acid were prepared, and the structure of the cocrystal with oxalic acid was solved. Both cocrystals exhibit improved dissolution properties. The mechanism of the supersaturation maintenance was studied by in-situ Raman spectroscopy. The transformation into rivaroxaban dihydrate was identified as the critical step in the improved dissolution properties of both cocrystals. Moreover, the transformation kinetics and solubilization effects of the coformers were identified as responsible for the differences in the dissolution behavior of the cocrystals. In-vivo experiments proved that the use of cocrystal instead of form I of free API helped to increase the bioavailability ofrivaroxaban.


Assuntos
Rivaroxabana , Água , Cristalização , Ácido Oxálico , Solubilidade , Água/química , Difração de Raios X
6.
J Phys Chem B ; 126(2): 503-512, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-34994565

RESUMO

In drug manufacturing, solvent-based methods are used for the crystallization of active pharmaceutical ingredients (APIs). Often, the solvent interacts with the API resulting in the formation of a new solid compound, the solvate. When desolvation occurs upon heating, it might result in the formation of new solid forms with significantly different physicochemical properties. Therefore, in this work, we study the desolvation kinetics by combining in situ powder X-ray diffraction (PXRD), all-atom molecular dynamics (MD) simulations, and macroscopic solid-state reaction kinetics modeling. The fluorobenzene (FB) solvate of Bruton's tyrosine kinase inhibitor Ibrutinib (IBR) was used as a model system. While the macroscopic solid-state modeling provides information about the desolvation kinetics, the MD simulations were used to trace individual FB molecules inside the crystal lattice. The activation energy of confined solvent diffusion, obtained by MD simulations, agrees well with results of the macroscopic solid-state reaction kinetics modeling. In addition, MD simulations provided detailed information about the IBR-FB interactions at the nanoscale. The mechanism revealed is that the solvent molecules diffusion, controlled by distinct open-close gating conformational changes of the drug, triggers the desolvation throughout the crystal lattice.


Assuntos
Preparações Farmacêuticas , Cristalização , Interações Medicamentosas , Solventes/química , Difração de Raios X
7.
Artigo em Inglês | MEDLINE | ID: mdl-34879790

RESUMO

Two novel palladium(II)-amino acid complexes, [Pd(Ala)2]·H2O (PA) and [Pd(Val)2].H2O (PV) (Ala = alanine; Val = valine) were synthesized and characterized through FTIR, UV/Vis, 1H-NMR spectroscopies, CHN analysis, X-ray crystallography and molar conductivity measurement. Furthermore, cytotoxicity of Pd(II) complexes against human leukemia cancer cell line, MOLT4 showed promising cancer cell death (CC50 = 0.71 ± 0.046 µM for PA; CC50 = 0.85 ± 0.063 µM for PV) that were less than cisplatin (1.59 ± 0.25 µM). Moreover, the interaction of both the complexes with DNA and BSA was studied using UV-Vis absorption and emission spectroscopic techniques that demonstrated the bindings occurred via van der Waals forces and hydrogen bond. Furthermore, the fluorescence titration showed that static quenching mechanism plays predominate role in binding process. All results showed that both complexes have more binding tendency to DNA in compared to BSA that can be a significant achievement for further medical purposes as a potential antitumor candidate. Finally, molecular docking simulation was performed for PA and PV complexes with DNA and BSA and demonstrated both complexes bind to the groove of DNA mainly by hydrogen bond and interact with site I of BSA via hydrogen bond as well.


Assuntos
Paládio
8.
Acta Crystallogr C Struct Chem ; 77(Pt 4): 186-196, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33818441

RESUMO

The crystal structures of two single-enantiomer amidophosphoesters with an (O)2P(O)(N) skeleton and one single-enantiomer phosphoric triamide with an (N)2P(O)(N) skeleton were studied. The compounds are diphenyl [(R)-(+)-α-4-dimethylbenzylamido]phosphate, (I), and diphenyl [(S)-(-)-α-4-dimethylbenzylamido]phosphate, (II), both C21H22NO3P, and N-(2,6-difluorobenzoyl)-N',N''-bis[(R)-(+)-α-ethylbenzyl]phosphoric triamide, C25H28F2N3O2P, (III). The asymmetric units contain two amidophosphoester molecules for (I) and (II), and one phosphoric triamide molecule for (III). In the crystal structures of (I) and (II), molecules are assembled in a similar one-dimensional chiral ribbon architecture, but with almost a mirror-image relationship with respect to each other through N-H...O(P) and C-H...O(P) hydrogen bonds along [010]. In the crystal structure of (III), the chiral tape architecture along [100] is mediated by N-H...O(P) and N-H...O(C) hydrogen bonds, and the tapes are connected into slabs by C-H...O interactions (along the ab plane). The differences/similarities of the two diastereotopic phenoxy groups in (I)/(II) and the two chiral amine fragments in (III) were studied on the grounds of geometry, conformation and contribution to the crystal packing, as well as 1H and 13C signals in a solution NMR study.

9.
J Appl Crystallogr ; 53(Pt 3): 841-847, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32684899

RESUMO

This article describes new developments in the CrystalCMP software. In particular, an automatic procedure for comparison of molecular packing is presented. The key components are an automated procedure for fragment selection and the replacement of the angle calculation by root-mean-square deviation of atomic positions. The procedure was tested on a large data set taken from the Cambridge Structural Database (CSD) and the results of all the comparisons were saved as an HTML page, which is freely available on the web. The analysis of the results allowed estimation of the threshold for identification of identical packing and allowed duplicates and entries with potentially incorrect space groups to be found in the CSD.

10.
Molecules ; 25(8)2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-32326160

RESUMO

The presence of impurities can drastically affect the efficacy and safety of pharmaceutical entities. p-Aminophenol (PAP) is one of the main impurities of paracetamol (PA) that can potentially show toxic effects such as maternal toxicity and nephrotoxicity. The removal of PAP from PA is challenging and difficult to achieve through regular crystallization approaches. In this regard, we report four new salts of PAP with salicylic acid (SA), oxalic acid (OX), l-tartaric acid (TA), and (1S)-(+)-10-camphorsulfonic acid (CSA). All the PAP salts were analyzed using single-crystal X-ray diffraction, powder X-ray diffraction, infrared spectroscopy, differential scanning calorimetry, and thermogravimetric analysis. The presence of minute amounts of PAP in paracetamol solids gives a dark color to the product that was difficult to remove through crystallization. In our study, we found that the addition of small quantities of the aforementioned acids helps to remove PAP from PA during the filtration and washings. This shows that salt formation could be used to efficiently remove challenging impurities.


Assuntos
Aminofenóis/química , Contaminação de Medicamentos , Compostos Orgânicos/química , Preparações Farmacêuticas/química , Preparações Farmacêuticas/normas , Sais/química , Cristalografia por Raios X , Modelos Moleculares , Estrutura Molecular , Preparações Farmacêuticas/análise , Pós
11.
Acta Crystallogr C Struct Chem ; 76(Pt 2): 164-169, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-32022711

RESUMO

The crystal structure, Hirshfeld surface analysis and spectroscopic analysis of a new polyoxometalate (POM) compound, namely, nonakis(2-methoxyaniline) bis(diphosphopentamolybdate) trihydrate, (C7H9NO)9[P2Mo5O23]2·3H2O, is reported. The title compound was synthesized using the solution method and was structurally characterized by single-crystal X-ray diffraction, which revealed P-1 symmetry. A study of the intermolecular interactions using Hirshfeld surface analysis confirmed that the hydrogen-bonding interactions play the dominant role in the stability of the crystal structure. The refinement was complicated by extensive disorder affecting 11 of the 16 ions and molecules in the asymmetric unit. IR and UV-Vis spectroscopic techniques were used to identify the vibrational modes and to classify this compound as an insulator.

12.
Spectrochim Acta A Mol Biomol Spectrosc ; 227: 117593, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-31654847

RESUMO

The tri-dentate Schiff base ligand 3-(2-hydroxyethylimino)-1-phenylbut-1-en-1-ol (L) produced the tetra-nuclear Cu(II) distorted cubane complex which contain Cu4O4 core, upon reaction with Cu(II)acetate.H2O. The complex was structurally characterized by X-ray crystallography and found that, in this tetrameric and tetra-nuclear distorted cubane structure, each two-fold deprotonated Schiff base ligand coordinated to a Cu(II) center with their alcoholic oxygens and imine nitrogens and formed six and five-membered chelate rings. At the same time, each ligand bridged to a neighboring Cu(II) atom by its alcoholic oxygen, thus the metal centers became penta-coordinated. The copper(II) complex with µ-ɳ2-hydroxo bridges and Cu….Cu distance about 3 Šwas structurally similar to the active site of natural catechol oxidase enzyme and exhibited excellent catecholase activity in aerobic oxidation of 3,5-di-tert-butyl catechol to its o-quinone. The kinetics and mechanism of the oxidation of 3, 5-DTBCH2 catalyzed by [CuL]4 complex, were studied at four different temperatures from 283 to 313K by UV-Vis spectroscopy. Interaction of [CuL]4 complex with FS-DNA was investigated by UV-Vis and fluorescence spectroscopy, viscosity measurements, cyclic voltammetry (CV), circular dichroism (CD) and agarose gel electrophoresis. The main mode of binding of the complexes with DNA was intercalation. The interaction between [CuL]4 complex and bovine serum albumin (BSA) was studied by UV-Vis, fluorescence and synchronous fluorescence spectroscopic techniques. The results indicated a high binding affinity of the complex to BSA. In vitro anticancer activity of the complex was evaluated against A549, Jurkat and Ragi cell lines by MTT assay. The complex was remarkably active against the cell lines and can be a good candidate for an anticancer drug. Theoretical docking studies were performed to further investigate the DNA and BSA binding interactions.


Assuntos
Complexos de Coordenação/farmacologia , Cobre/farmacologia , DNA/metabolismo , Substâncias Intercalantes/farmacologia , Soroalbumina Bovina/metabolismo , Animais , Catálise , Catecol Oxidase/química , Catecóis/química , Bovinos , Complexos de Coordenação/química , Cobre/química , Cristalografia por Raios X , Substâncias Intercalantes/química , Modelos Moleculares , Oxirredução/efeitos dos fármacos , Temperatura
13.
J Org Chem ; 84(12): 7543-7563, 2019 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-30830782

RESUMO

Effective desymmetrization in copper-catalyzed intramolecular C-H insertion reactions of α-diazo-ß-oxosulfones in the formation of fused thiopyran dioxides is described for the first time. The use of a copper-bis(oxazoline)-NaBARF catalyst complex system leads to formation of the major thiopyran dioxide stereoisomer with up to 98:2 dr and up to 98% ee. The effect of varying the bis(oxazoline) ligand, copper salt, and site of C-H insertion on both diastereo- and enantioselectivities of these intramolecular C-H insertion reactions has been investigated. Similarly, desymmetrization in the formation of a fused cyclopentanone proceeds with up to 64% ee. These results represent the highest enantioselectivity reported to date in a copper-mediated desymmetrization through C-H insertion.

14.
Artigo em Inglês | MEDLINE | ID: mdl-32165766

RESUMO

The thermodynamic properties, phase behavior, and kinetics of polymorphic transformations of racemic (DL-) and enantiopure (L-) menthol were studied using a combination of advanced experimental techniques, including static vapor pressure measurements, adiabatic calorimetry, Tian-Calvet calorimetry, differential scanning calorimetry (DSC), and variable-temperature X-ray powder diffraction. Several concomitant polymorphs (α, ß, γ, and δ forms) were observed and studied. A continuous transformation to the stable α form was detected by DSC and monitored in detail using X-ray powder diffraction. A long-term coexistence of the stable crystalline form with the liquid phase was observed. The vapor pressure measurements of both compounds were performed using two static apparatus over a temperature range from 274 K to 363 K. Condensed-phase heat capacities were measured by adiabatic and Tian-Calvet calorimetry in the wide temperature interval from 5 K to 368 K. Experimental data of L- and DL-menthol are compared mutually as well as with available literature results. The thermodynamic functions of crystalline and liquid L-menthol between 0 K and 370 K were calculated from the calorimetric results. The thermodynamic properties in the ideal-gas state were obtained by combining statistical thermodynamics and quantum chemical calculations based on a thorough conformational analysis. Calculated ideal-gas heat capacities and experimental data on vapor pressure and condensed-phase heat capacity were treated simultaneously to obtain a consistent thermodynamic description. Based on the obtained results, the phase diagrams of L-menthol and DL-menthol were suggested.

15.
J Pharm Sci ; 102(4): 1235-48, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23359249

RESUMO

Analysis of C cross-polarization magic angle spinning (CP/MAS) nuclear magnetic resonance (NMR), differential scanning calorimetry (DSC), Fourier transform infrared (FTIR), and X-ray powder diffraction data of trospium chloride (TCl) products crystallized from different mixtures of water-ethanol [φ(EtOH) = 0.5-1.0] at various temperatures (0°C, 20°C) and initial concentrations (saturated solution, 30%-50% excess of solvent) revealed extensive structural variability of TCl. Although (13) C CP/MAS NMR spectra indicated broad variety of structural phases arising from molecular disorder, temperature-modulated DSC identified presence of two distinct components in the products. FTIR spectra revealed alterations in the hydrogen bonding network (ionic hydrogen bond formation), whereas the X-ray diffraction reflected unchanged unit cell parameters. These results were explained by a two-component character of TCl products in which a dominant polymorphic form is accompanied by partly separated nanocrystalline domains of a secondary phase that does not provide clear Bragg reflections. These phases slightly differ in the degree of molecular disorder, in the quality of crystal lattice and hydrogen bonding network. It is also demonstrated that, for the quality control of such complex products, (13) C CP/MAS NMR spectroscopy combined with factor analysis (FA) can satisfactorily be used for categorizing the individual samples: FA of (13) C CP/MAS NMR spectra found clear relationships between the extent of molecular disorder and crystallization conditions. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 102:1235-1248, 2013.


Assuntos
Benzilatos/química , Nortropanos/química , Varredura Diferencial de Calorimetria , Cristalização , Espectroscopia de Ressonância Magnética , Difração de Pó , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA