Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Steroid Biochem Mol Biol ; 233: 106362, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37451557

RESUMO

Cancer remains a major health concern worldwide. The most frequently diagnosed types of cancer are caused by abnormal production or action of steroid hormones. In the present study, the synthesis and structural characterization of new heterocyclic androstane derivatives with D-homo lactone, 17α-(pyridine-2''-ylmethyl) or 17(E)-(pyridine-2''-ylmethylidene) moiety are presented. All compounds were evaluated for their anti-proliferative activity against HeLa cervical cancer cell line and non-cancerous kidney MDCK cells, where A-homo lactam compound 9A showed the greatest selectivity. Based on in vitro binding assays, N-formyl lactam compound 18 appeared to be the strong and isoform-selective ligand for ERα, while compound 9A displayed binding affinity for the GR-LBD, but also inhibited aldo-keto reductase 1C4 enzyme. Out of four selected compounds, methylpyrazolo derivative 13 showed potential for aromatase binding, while in silico studies provided insight into experimentally confirmed protein-ligand interactions.


Assuntos
Androstanos , Antineoplásicos , Humanos , Ligantes , Androstanos/farmacologia , Androstanos/química , Esteroides/metabolismo , Lactamas/farmacologia , Relação Estrutura-Atividade , Proliferação de Células , Estrutura Molecular , Ensaios de Seleção de Medicamentos Antitumorais , Linhagem Celular Tumoral
2.
RSC Med Chem ; 14(2): 341-355, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36846371

RESUMO

Aldo-keto reductase 1C3 (AKR1C3) catalyzes the reduction of androstenedione to testosterone and reduces the effectiveness of chemotherapeutics. AKR1C3 is a target for treatment of breast and prostate cancer and AKR1C3 inhibition could be an effective adjuvant therapy in the context of leukemia and other cancers. In the present study, steroidal bile acid fused tetrazoles were screened for their ability to inhibit AKR1C3. Four C24 bile acids with C-ring fused tetrazoles were moderate to strong AKR1C3 inhibitors (37-88% inhibition), while B-ring fused tetrazoles had no effect on AKR1C3 activity. Based on a fluorescence assay in yeast cells, these four compounds displayed no affinity for estrogen receptor-α, or the androgen receptor, suggesting a lack of estrogenic or androgenic effects. A top inhibitor showed specificity for AKR1C3 over AKR1C2, and inhibited AKR1C3 with an IC50 of ∼7 µM. The structure of AKR1C3·NADP+ in complex with this C-ring fused bile acid tetrazole was determined by X-ray crystallography at 1.4 Å resolution, revealing that the C24 carboxylate is anchored to the catalytic oxyanion site (H117, Y55); meanwhile the tetrazole interacts with a tryptophan (W227) important for steroid recognition. Molecular docking predicts that all four top AKR1C3 inhibitors bind with nearly identical geometry, suggesting that C-ring bile acid fused tetrazoles represent a new class of AKR1C3 inhibitors.

3.
Beilstein J Org Chem ; 17: 2611-2620, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34760027

RESUMO

A practical and high-yielding Schmidt reaction for the synthesis of fused tetrazoles from bile acid precursors was developed. Mild reaction conditions using TMSN3 instead of hydrazoic acid as an azide source produced good yields of the desired tetrazoles. These conditions could be applied to other steroidal precursors. Additionally, an improved methodology for the synthesis of different ketone and enone precursors from cholic acid, deoxycholic acid, and chenodeoxycholic acid was established. Newly obtained tetrazole derivatives were characterized by NMR and X-ray diffraction spectroscopy. In a number of cases, preliminary antiproliferative tests of new compounds showed strong and selective activity towards certain tumor cell lines.

4.
RSC Adv ; 11(59): 37449-37461, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-35496404

RESUMO

Steroid anticancer drugs are the focus of numerous scientific research efforts. Due to their high cytotoxic effects against tumor cells, some natural or synthetic steroid compounds seem to be promising for the treatment of different classes of cancer. In the present study, fourteen novel O-alkylated oxyimino androst-4-ene derivatives were synthesized from isomerically pure 3E-oximes, using different alkylaminoethyl chlorides. Their in vitro cytotoxic activity was evaluated against eight human cancer cell lines, as well as against normal fetal lung (MRC-5) and human foreskin (BJ) fibroblasts, to test the efficiency and selectivity of the compounds. Most derivatives displayed strong activity against malignant melanoma (G-361), lung adenocarcinoma (A549) and colon adenocarcinoma (HT-29) cell lines. Angiogenesis was assessed in vitro using migration scratch and tube formation assays on HUVEC cells, where partial inhibition of endothelial cell migration was observed for the 17α-(pyridin-2-yl)methyl 2-(morpholin-4-yl)ethyl derivative. Among the compounds that most impaired the growth of lung cancer A549 cells, the (17E)-(pyridin-2-yl)methylidene derivative bearing a 2-(pyrrolidin-1-yl)ethyl substituent induced significant apoptosis in these cells. In combination with low cytotoxicity toward normal MRC-5 cells, this molecule stands out as a good candidate for further anticancer studies. In addition, in vitro investigations against cytochrome P450 enzymes revealed that certain compounds can bind selectively in the active sites of human steroid hydroxylases CYP7, CYP17A1, CYP19A1 or CYP21A2, which could be important for the development of novel activity modulators of these enzymes and identification of possible side effects.

5.
Steroids ; 157: 108596, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32068078

RESUMO

This paper describes the synthesis of a new A-homo lactam D-homo lactone androstane derivative from dehydroepiandrosterone. To evaluate the impact of the introduction of nitrogen in the parental scaffold on biological activity, a new androstane enamide-type lactam derivative was prepared and characterized. The new compound as well as starting compounds were screened for cytotoxic, anti-angiogenic and anti-inflammatory activities using several human cancer cell lines (MCF-7, MDA-MB-231, PC3, CEM, G-361, HeLa), endothelial (HUVEC) and non-tumour (MRC-5 and BJ) cell lines. Strong cytotoxic and anti-inflammatory activity with a broad therapeutical window was demonstrated by the A-homo lactam D-homo lactone androstane derivative. The induction of apoptosis in treated PC3 cultures was confirmed using apoptotic morphology screening and a fluorescent double-staining method. New A-homo lactam D-homo lactone androstane derivative induced apoptosis more than the tested reference compounds, Formestane and Doxorubicin. An in silico ADME analysis showed that the compounds possess drug-like properties.


Assuntos
Androstanos/farmacologia , Anti-Inflamatórios/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Selectina E/antagonistas & inibidores , Lactonas/farmacologia , Androstanos/química , Androstanos/isolamento & purificação , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Selectina E/biossíntese , Humanos , Lactonas/química , Lactonas/isolamento & purificação , Conformação Molecular , Imagem Óptica , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA