Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mar Pollut Bull ; 205: 116604, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38936002

RESUMO

Methylmercury is a toxin of local, regional, and global concern, with estuarine habitats possessing ecological characteristics that support conversion of inorganic mercury into this methylated form. We monitored Hg concentrations in species within the food web of the lower Cape Fear River (CFR) estuary in 2018-2020. Samples were analyzed for Hg concentrations and nitrogen isotopes (a measure of trophic level), and we found a positive relationship within this food web each year (p < 0.0001), indicating biomagnification is occurring. The highest Hg concentrations were among the upper trophic level species (Royal Terns, 4.300 ppm). While the Hg concentrations we documented are below assumed thresholds for toxic effects, we found spikes in Hg concentrations after Hurricane Florence in 2018 and with other disturbances to the CFR that resuspended bottom sediments. Continued monitoring is needed to understand the cause of annual variations, health implications, and conservation needs.


Assuntos
Monitoramento Ambiental , Estuários , Cadeia Alimentar , Mercúrio , Poluentes Químicos da Água , Mercúrio/análise , Poluentes Químicos da Água/análise , Animais , Rios/química , Compostos de Metilmercúrio/análise
2.
Environ Sci Process Impacts ; 24(11): 2119-2128, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36200300

RESUMO

The sediment distribution of per- and polyfluoroalkyl substances (PFAS) along a river to ocean transect was investigated. Samples were collected between September 2017 and October 2019 with targeted quantification of six legacy and replacement PFAS by LC-MS/MS. Total PFAS concentrations ranged from below the LOQ to 7.47 ng per g dry weight with PFOA, PFOS, HFPO-DA and PFMOAA the most frequently detected. Significant correlations (p < 0.05) were found between PFOS and HFPO-DA sedimentary concentration and percent organic carbon (% OC); however, PFOA and PFMOAA were not correlated with sediment % OC. This study highlights the occurrence of the replacement PFAS in sediments for the first time. Sediment extracts were screened for 18 additional PFAS compounds by high resolution mass spectrometry. A series of perfluorinated ether carboxylic acid and perfluorinated ether sulfonic acid with either one or two acidic functional groups were detected at various locations in the upper portion of the Cape Fear River. A series of chromatographically resolved isomers (C7F13O5S1; M-1) were detected and may be Nafion™ degradation products.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Poluentes Químicos da Água , Fluorocarbonos/análise , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Cromatografia Líquida , North Carolina , Espectrometria de Massas em Tandem , Éteres/análise , Ácidos Alcanossulfônicos/análise
3.
Chemosphere ; 262: 128359, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33182107

RESUMO

Per- and polyfluoroalkyl substances (PFAS) have become ubiquitous environmental contaminants found in many parts of the globe and in all environmental compartments. The phase out of legacy C8 PFAS has led to an increase in functionality of the carbon backbone chain to include ether linkages and branching points. With the increased production of functionalized PFAS, there remains a paucity of information regarding the occurrence of constitutional isomers in the environment. In this study, a series of novel PFAS constitutional isomers were detected by high resolution mass spectrometry and characterized by MS/MS in river water collected weekly over 40 weeks. Constitutional isomers of C4H2F8O4S1 (-1.8 ± 2.5 ppm) were detected for the first time in 83% of the samples analyzed and the MS/MS fragmentation patterns clearly indicated there were two coeluting isomers present. Two chromatographically resolved peaks with deprotonated molecular formula C7H1F14O5S1 (1.9 ± 2.7 and 2.2 ± 3.1 ppm) were detected in 85% of the samples measured. MS/MS fragmentation patterns and a standard provided by a fluorochemical manufacturer confirmed the two isomers. A series of novel chlorinated PFAS were detected (M-1: C11H1Cl1F20O5 0.9 ± 2.7 ppm and C14H1Cl1F26O6 2.1 ± 2.6 ppm) in 34% of the water samples analyzed. The exact structure is not confirmed. River sediment collected below the water sample location contained several of the compounds detected in the water column illustrating the connectivity between the environmental compartments. Results highlight the need for further studies on the occurrence of isomers and authentic standards to confirm structures.


Assuntos
Fluorocarbonos/análise , Fluorocarbonos/química , Sedimentos Geológicos/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Sedimentos Geológicos/química , Isomerismo , North Carolina , Rios/química , Espectrometria de Massas em Tandem/métodos , Poluentes Químicos da Água/química
4.
Harmful Algae ; 63: 1-6, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28366384

RESUMO

A series of ten photolysis experiments was conducted with sediments exposed to Microcystis sp. blooms to determine if sunlight is capable of mobilizing the biotoxin microcystin-LR (MC-LR) into the water column. There was a net photorelease of MC-LR in irradiated suspensions in all cases relative to dark controls, ranging from 0.4 to 192µgL-1g-1 into the dissolved phase. This should be viewed as a minimum estimate of photorelease due to concurrent photodegradation of dissolved toxin. Dissolved MC-LR concentrations in a sediment suspension increased linearly in the aqueous phase during a six-hour irradiation with simulated sunlight suggesting that longer exposure times produce greater quantities of MC-LR. There was a significant positive correlation between photorelease of toxin and percent organic carbon of the resuspended material, implying that organic-rich sediments yield the greatest photorelease of MC-LR upon exposure to full spectrum sunlight. Samples exposed to photosynthetically active radiation (400nm-700nm) were responsible for less than 2% of the photorelease compared to full spectrum exposures. Model calculations indicate that photochemical processing of bloom impacted sediments could be responsible for as much as 100% of the average standing stock of MC-LR in a freshwater pond located in southeastern North Carolina, where surface water concentrations were also measured. Mass spectrometric analysis revealed a new peak in light exposed flasks that appears to be a photo-induced isomerized product of MC-LR. Photoproduction from resuspended sediments therefore represents a significant but previously unrecognized source of highly toxic MC-LR and photoproducts of unknown toxicity and fate to aquatic ecosystems.


Assuntos
Sedimentos Geológicos/microbiologia , Microcystis/metabolismo , Fotoquímica/métodos , Luz Solar
5.
Chemosphere ; 144: 360-5, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26383262

RESUMO

This study reports the first ethanol concentrations in fresh and estuarine waters and greatly expands the current data set for coastal ocean waters. Concentrations for 153 individual measurements of 11 freshwater sites ranged from 5 to 598 nM. Concentrations obtained for one estuarine transect ranged from 56 to 77 nM and levels in five coastal ocean depth profiles ranged from 81 to 334 nM. Variability in ethanol concentrations was high and appears to be driven primarily by photochemical and biological processes. 47 gas phase concentrations of ethanol were also obtained during this study to determine the surface water degree of saturation with respect to the atmosphere. Generally fresh and estuarine waters were undersaturated indicating they are not a source and may be a net sink for atmospheric ethanol in this region. Aqueous phase ethanol is likely converted rapidly to acetaldehyde in these aquatic ecosystems creating the undersaturated conditions resulting in this previously unrecognized sink for atmospheric ethanol. Coastal ocean waters may act as either a sink or source of atmospheric ethanol depending on the partial pressure of ethanol in the overlying air mass. Results from this study are significant because they suggest that surface waters may act as an important vector for the uptake of ethanol emitted into the atmosphere including ethanol from biofuel production and usage.


Assuntos
Etanol/análise , Poluentes Químicos da Água/análise , Estuários , Água Doce/análise , Gases , Água do Mar/análise
6.
Rapid Commun Mass Spectrom ; 28(22): 2455-60, 2014 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-25303474

RESUMO

RATIONALE: Karenia brevis, a marine dinoflagellate, biosynthesizes a unique class of polyether toxins called brevetoxins that produce significant health, environmental and economic impacts in and along coastal waters. Previous application of liquid chromatography/mass spectrometry for detection of the most common brevetoxin, PbTx-2, has relied almost exclusively upon electrospray ionization (ESI). A different ionization source is proposed in this study with improved sensitivity ultimately leading to lower limit of detection compared to (+) ESI. METHODS: Brevetoxin standards and samples (PbTx-2) were analyzed by liquid chromatography/mass spectrometry using both (+) atmospheric pressure chemical ionization and (+) electrospray ionization sources. RESULTS: LC/MS with (+) APCI exhibited an order of magnitude improvement in the limit of detection (7.7 × 10(-4) pg mass on-column) compared to the same method using (+) ESI (7.5 × 10(-3) pg mass on-column). The calibration sensitivity of (+) APCI (1.3 × 10(3)) was also five times higher than positive mode (+) ESI (0.26 × 10(3)). CONCLUSIONS: Positive mode APCI represents a significant improvement in detection and quantification of PbTx-2 by LC/MS allowing for smaller sample sizes compared to previous studies using (+) ESI. This in turn leads to higher throughput of samples during and after bloom events giving stakeholders detailed information on the fate of this potent marine toxin.

7.
Water Res ; 47(10): 3455-66, 2013 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23628152

RESUMO

Fecal microbial pollution of recreational and shellfishing waters is a major human health and economic issue. Microbial pollution sourced from stormwater runoff is especially widespread, and strongly associated with urbanization. However, non-point source nutrient pollution is also problematic, and may come from sources different from fecal-derived pollution (i.e. fertilization of farm fields, lawns and gardens, and ornamental urban areas). Fecal bacteria require nutrients; thus the impact of such nutrient loading on survival and abundance of fecal coliform bacteria in ambient waters was experimentally investigated in a constructed wetland in coastal North Carolina, USA. A series of nutrient-addition bioassays testing impacts of inorganic and organic nitrogen and phosphorus demonstrated that additions of neither organic nor inorganic nitrogen stimulated fecal coliform bacteria. However, phosphorus additions provided significant stimulation of fecal coliform growth at times; on other occasions such additions did not. Dilution bioassays combined with nutrient additions were subsequently devised to assess potential impacts of microzooplankton grazing on the target fecal bacteria populations. Results demonstrated grazing to be a significant bacterial reduction factor in 63% of tests, potentially obscuring nutrient effects. Thus, combining dilution experiments with nutrient addition bioassays yielded simultaneous information on microzooplankton grazing rates on fecal bacteria, fecal bacterial growth rates, and nutrient limitation. Overall, when tested against a non-amended control, additions of either organic or inorganic phosphorus significantly stimulated fecal coliform bacterial growth on 50% of occasions tested, with organic phosphorus generally providing greater stimulation. The finding of significant phosphorus stimulation of fecal bacteria indicates that extraneous nutrient loading can, at times, augment the impacts of fecal microbial pollution of shellfishing and human contact waters.


Assuntos
Bactérias/crescimento & desenvolvimento , Fezes/microbiologia , Fósforo/metabolismo , Animais , Bactérias/efeitos dos fármacos , Técnicas Bacteriológicas/métodos , Enterobacteriaceae/efeitos dos fármacos , Enterobacteriaceae/crescimento & desenvolvimento , Monitoramento Ambiental/métodos , Humanos , Nitrogênio/metabolismo , Nitrogênio/farmacologia , North Carolina , Fósforo/farmacologia , Microbiologia da Água , Poluição da Água/prevenção & controle , Áreas Alagadas , Zooplâncton/fisiologia
8.
Environ Sci Technol ; 38(13): 3587-94, 2004 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-15296309

RESUMO

Copper speciation was determined in 68 rainwater samples collected in Wilmington, NC, from August 25, 2000, to September 24, 2002. Volume-weighted average concentrations of Cu(total), dissolved Cu(II), and dissolved Cu(I) were 5.3, 3.2, and 1.4 nM, respectively, with a significantly higher ratio of Cu(II)/Cu(I) in summer relative to winter events. The concentrations of all Cu species were higher in storms of continental origin relative to marine-dominated events, suggesting anthropogenic and/or terrestrial sources are important contributors of Cu in precipitation. Concentrations of strong Cu-complexing ligands were consistently lower than dissolved Cu concentrations, indicating a significant portion, but not all, of the dissolved Cu in rainwater is strongly complexed. A portion of these ligands, in addition to the sulfite and chloride in precipitation, may be Cu(I)-complexing ligands, which may explain the resistance of Cu(I) against oxidation in rainwater. Using our rainwater concentration data along with other published rainwater Cu concentrations and an estimate for total global annual rain, the total global flux of Cu removed from the atmosphere via wet deposition is 150 x 106 kg yr(-1). This represents complete removal of the estimated Cu input into the troposphere and indicates essentially all Cu released into the global atmosphere is removed by rain.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/estatística & dados numéricos , Atmosfera/análise , Cobre/análise , Água Doce/análise , Chuva , Poluição do Ar/análise , Cromatografia , Peróxido de Hidrogênio/análise , Ligantes , North Carolina , Estações do Ano , Espectrofotometria Atômica
9.
Inorg Chem ; 41(26): 7151-8, 2002 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-12495357

RESUMO

Increased preorganization can be achieved by immobilizing ligands on solid supports. Photoluminescent porous silicon, which can undergo facile hydrosilylation, was used as a support for open chain neutral N- and O-donor ligands. The abilities of these ligands to bind the divalent metal ions Ni(2+), Cu(2+), Zn(2+), and Pb(2+) are examined. Immobilized ligands selectively complexed Cu(II) over the other metal ions studied. Ligands immobilized on photoluminescent porous silicon also removed a significant amount, up to 98%, of Cu(II) from copper(II)-spiked, organic-rich, seawater samples.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA