Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Viruses ; 16(5)2024 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-38793652

RESUMO

The genus Acinetobacter comprises both environmental and clinically relevant species associated with hospital-acquired infections. Among them, Acinetobacter baumannii is a critical priority bacterial pathogen, for which the research and development of new strategies for antimicrobial treatment are urgently needed. Acinetobacter spp. produce a variety of structurally diverse capsular polysaccharides (CPSs), which surround the bacterial cells with a thick protective layer. These surface structures are primary receptors for capsule-specific bacteriophages, that is, phages carrying tailspikes with CPS-depolymerizing/modifying activities. Phage tailspike proteins (TSPs) exhibit hydrolase, lyase, or esterase activities toward the corresponding CPSs of a certain structure. In this study, the data on all lytic capsule-specific phages infecting Acinetobacter spp. with genomes deposited in the NCBI GenBank database by January 2024 were summarized. Among the 149 identified TSPs encoded in the genomes of 143 phages, the capsular specificity (K specificity) of 46 proteins has been experimentally determined or predicted previously. The specificity of 63 TSPs toward CPSs, produced by various Acinetobacter K types, was predicted in this study using a bioinformatic analysis. A comprehensive phylogenetic analysis confirmed the prediction and revealed the possibility of the genetic exchange of gene regions corresponding to the CPS-recognizing/degrading parts of different TSPs between morphologically and taxonomically distant groups of capsule-specific Acinetobacter phages.


Assuntos
Acinetobacter , Cápsulas Bacterianas , Bacteriófagos , Genoma Viral , Filogenia , Bacteriófagos/genética , Bacteriófagos/enzimologia , Bacteriófagos/classificação , Acinetobacter/virologia , Acinetobacter/genética , Acinetobacter/enzimologia , Cápsulas Bacterianas/metabolismo , Cápsulas Bacterianas/genética , Proteínas da Cauda Viral/genética , Proteínas da Cauda Viral/metabolismo , Polissacarídeos/metabolismo , Polissacarídeos Bacterianos/metabolismo , Polissacarídeos Bacterianos/genética , Acinetobacter baumannii/virologia , Acinetobacter baumannii/genética , Acinetobacter baumannii/enzimologia , Glicosídeo Hidrolases
2.
Int J Mol Sci ; 23(9)2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35563361

RESUMO

In this study, several different depolymerases encoded in the prophage regions of Acinetobacter baumannii genomes have been bioinformatically predicted and recombinantly produced. The identified depolymerases possessed multi-domain structures and were identical or closely homologous to various proteins encoded in other A. baumannii genomes. This means that prophage-derived depolymerases are widespread, and different bacterial genomes can be the source of proteins with polysaccharide-degrading activities. For two depolymerases, the specificity to capsular polysaccharides (CPSs) of A. baumannii belonging to K1 and K92 capsular types (K types) was determined. The data obtained showed that the prophage-derived depolymerases were glycosidases that cleaved the A. baumannii CPSs by the hydrolytic mechanism to yield monomers and oligomers of the K units. The recombinant proteins with established enzymatic activity significantly reduced the mortality of Galleria mellonella larvae infected with A. baumannii of K1 and K92 capsular types. Therefore, these enzymes can be considered as suitable candidates for the development of new antibacterials against corresponding A. baumannii K types.


Assuntos
Acinetobacter baumannii , Bacteriófagos , Acinetobacter baumannii/química , Acinetobacter baumannii/genética , Acinetobacter baumannii/metabolismo , Cápsulas Bacterianas/genética , Cápsulas Bacterianas/metabolismo , Bacteriófagos/química , Bacteriófagos/metabolismo , Glicosídeo Hidrolases/metabolismo , Polissacarídeos/metabolismo , Polissacarídeos Bacterianos/metabolismo , Prófagos/genética , Prófagos/metabolismo
3.
Viruses ; 13(6)2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34070371

RESUMO

Acinetobacter baumannii, one of the most significant nosocomial pathogens, is capable of producing structurally diverse capsular polysaccharides (CPSs) which are the primary receptors for A. baumannii bacteriophages encoding polysaccharide-degrading enzymes. To date, bacterial viruses specifically infecting A. baumannii strains belonging to more than ten various capsular types (K types) were isolated and characterized. In the present study, we investigate the biological properties, genomic organization, and virus-bacterial host interaction strategy of novel myovirus TaPaz isolated on the bacterial lawn of A. baumannii strain with a K47 capsular polysaccharide structure. The phage linear double-stranded DNA genome of 93,703 bp contains 178 open reading frames. Genes encoding two different tailspike depolymerases (TSDs) were identified in the phage genome. Recombinant TSDs were purified and tested against the collection of A. baumannii strains belonging to 56 different K types. One of the TSDs was demonstrated to be a specific glycosidase that cleaves the K47 CPS by the hydrolytic mechanism.


Assuntos
Acinetobacter baumannii/virologia , Bacteriófagos/genética , Glicosídeo Hidrolases/genética , Interações Hospedeiro-Patógeno , Proteínas da Cauda Viral/genética , Bacteriófagos/enzimologia , Bacteriófagos/isolamento & purificação , Bacteriófagos/ultraestrutura , Genoma Viral , Genômica/métodos , Glicosídeo Hidrolases/metabolismo , Especificidade de Hospedeiro , Fases de Leitura Aberta , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA