Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 14(9): 11110-11119, 2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32803959

RESUMO

The availability of accessible fabrication methods based on deterministic transfer of atomically thin crystals has been essential for the rapid expansion of research into van der Waals heterostructures. An inherent issue of these techniques is the deformation of the polymer carrier film during the transfer, which can lead to highly nonuniform strain induced in the transferred two-dimensional material. Here, using a combination of optical spectroscopy, atomic force, and Kelvin probe force microscopy, we show that the presence of nanometer scale wrinkles formed due to transfer-induced stress relaxation can lead to strong changes in the optical properties of MoSe2/WSe2 heterostructures and the emergence of linearly polarized interlayer exciton photoluminescence. We attribute these changes to local breaking of crystal symmetry in the nanowrinkles, which act as efficient accumulation centers for interlayer excitons due to the strain-induced interlayer band gap reduction. Surface potential images of the rippled heterobilayer samples acquired using Kelvin probe force microscopy reveal variations of the local work function consistent with strain-induced band gap modulation, while the potential offset observed at the ridges of the wrinkles shows a clear correlation with the value of the tensile strain estimated from the wrinkle geometry. Our findings highlight the important role of the residual strain in defining optical properties of van der Waals heterostructures and suggest effective approaches for interlayer exciton manipulation by local strain engineering.

2.
Nano Lett ; 17(9): 5342-5349, 2017 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-28753319

RESUMO

Vertically stacked atomic layers from different layered crystals can be held together by van der Waals forces, which can be used for building novel heterostructures, offering a platform for developing a new generation of atomically thin, transparent, and flexible devices. The performance of these devices is critically dependent on the layer thickness and the interlayer electronic coupling, influencing the hybridization of the electronic states as well as charge and energy transfer between the layers. The electronic coupling is affected by the relative orientation of the layers as well as by the cleanliness of their interfaces. Here, we demonstrate an efficient method for monitoring interlayer coupling in heterostructures made from transition metal dichalcogenides using photoluminescence imaging in a bright-field optical microscope. The color and brightness in such images are used here to identify mono- and few-layer crystals and to track changes in the interlayer coupling and the emergence of interlayer excitons after thermal annealing in heterobilayers composed of mechanically exfoliated flakes and as a function of the twist angle in atomic layers grown by chemical vapor deposition. Material and crystal thickness sensitivity of the presented imaging technique makes it a powerful tool for characterization of van der Waals heterostructures assembled by a wide variety of methods, using combinations of materials obtained through mechanical or chemical exfoliation and crystal growth.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA