Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
FEBS Lett ; 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38794908

RESUMO

Neuronostatin suppresses the differentiation of white preadipocytes. However, the role of neuronostatin in brown adipose tissue remains elusive. Therefore, we investigated the impact of neuronostatin on the proliferation and differentiation of isolated rat brown preadipocytes. We report that neuronostatin and its receptor (GPR107) are synthesized in brown preadipocytes and brown adipose tissue. Furthermore, neuronostatin promotes the replication of brown preadipocytes via the AKT pathway. Notably, neuronostatin suppresses the expression of markers associated with brown adipogenesis (PGC-1α, PPARγ, PRDM16, and UCP1) and reduces cellular mitochondria content. Moreover, neuronostatin impedes the differentiation of preadipocytes by activating the JNK signaling pathway. These effects were not mimicked by somatostatin. Our results suggest that neuronostatin is involved in regulating brown adipogenesis.

2.
Genes (Basel) ; 14(10)2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37895259

RESUMO

GIP_HUMAN [22-51] is a recently discovered peptide that shares the same precursor molecule with glucose-dependent insulinotropic polypeptide (GIP). In vivo, chronic infusion of GIP_HUMAN [22-51] in ApoE-/- mice enhanced the development of aortic atherosclerotic lesions and upregulated inflammatory and proatherogenic proteins. In the present study, we evaluate the effects of GIP_HUMAN [22-51] on insulin mRNA expression and secretion in insulin-producing INS-1E cells and isolated rat pancreatic islets. Furthermore, we characterize the influence of GIP_HUMAN [22-51] on cell proliferation and death and on Nf-kB nuclear translocation. Rat insulin-producing INS-1E cells and pancreatic islets, isolated from male Wistar rats, were used in this study. Gene expression was evaluated using real-time PCR. Cell proliferation was studied using a BrdU incorporation assay. Cell death was quantified by evaluating histone-complexed DNA fragments. Insulin secretion was determined using an ELISA test. Nf-kB nuclear translocation was detected using immunofluorescence. GIP_HUMAN [22-51] suppressed insulin (Ins1 and Ins2) in INS-1E cells and pancreatic islets. Moreover, GIP_HUMAN [22-51] promoted the translocation of NF-κB from cytoplasm to the nucleus. In the presence of a pharmacological inhibitor of NF-κB, GIP_HUMAN [22-51] was unable to suppress Ins2 mRNA expression. Moreover, GIP_HUMAN [22-51] downregulated insulin secretion at low (2.8 mmol/L) but not high (16.7 mmol/L) glucose concentration. By contrast, GIP_HUMAN [22-51] failed to affect cell proliferation and apoptosis. We conclude that GIP_HUMAN [22-51] suppresses insulin expression and secretion in pancreatic ß cells without affecting ß cell proliferation or apoptosis. Notably, the effects of GIP_HUMAN [22-51] on insulin secretion are glucose-dependent.


Assuntos
Insulina , Ilhotas Pancreáticas , Ratos , Humanos , Camundongos , Masculino , Animais , Insulina/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Ratos Wistar , Camundongos Knockout para ApoE , Ilhotas Pancreáticas/metabolismo , Glucose/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , RNA Mensageiro/genética
3.
Children (Basel) ; 10(9)2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37761477

RESUMO

Spexin (SPX) is a peptide that plays an important role in the regulation of food intake and body weight (BW) by the effect on carbohydrate-lipid metabolism. However, the role of SPX in fetal life, in children, and in adolescent metabolism is limited. Therefore, we decided to check whether obesity affects the concentration of SPX in the mother's peripheral blood (MB) and umbilical cord blood (UCB). Using MB and UCB sera on the day of delivery obtained from 48 women (24 non-obese and 24 obese) and commercially available Elisa kits and colorimetric assays, we determined changes in SPX and the relationship between SPX concentration and other metabolic and anthropometric markers (body weight and BMI) on the day of delivery and in children at the age of 36 months. We found lower concentrations of SPX in MB (p < 0.05) and UCB (p < 0.01) derived from obese women (BMI > 30) and a moderate linear correlation (r = 0.4429; p < 0.01) between SPX concentrations in MB and UCB. We also noted that the concentration of SPX is not correlated with the child's body weight on the day of birth (r = -0.0128). However, there is a relationship between SPX at birth and body weight at 3 years of age (r = -0.3219; p < 0.05). Based on the obtained results, it can be assumed that spexin is one of the factors modulating the child's metabolism already in the fetal period and can be considered a potential marker of future predisposition to obesity. However, confirmation of this thesis requires additional research.

4.
Postepy Biochem ; 69(2): 89-95, 2023 06 30.
Artigo em Polonês | MEDLINE | ID: mdl-37493559

RESUMO

Neuronostatin is a peptide hormone encoded by the somatostatin gene. Neuronostatin was discovered in 2008 using bioinformatics methods. Studies in rodents have shown that it exerts a widespread effects in the central nervous system, as well as in peripheral tissues. It was demonstrated that neuronostatin reduces food and water intake, delays gastrointestinal transit, and may have important role in adipogenesis. It also increases glucagon secretion from pancreatic islet alpha cells. In addition, it has been proven that neuronostatin can affect cardiac contractility and blood pressure, and may be involved in processes related to memory, pain sensation and anxiety. In addition neuronostatin can induce a depression-like effect. In this article we review the literature addressing the biological role of neuronostatin in the organism.


Assuntos
Hormônios Peptídicos , Somatostatina , Hormônios Peptídicos/farmacologia , Hormônios Peptídicos/fisiologia , Transdução de Sinais , Insulina
5.
Anim Reprod Sci ; 255: 107282, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37356348

RESUMO

Phoenixin-14 (PNX-14) is a regulatory neuropeptide encoded by the SMIM20 gene, which has been implicated in the reproductive cycle by modulating the hypothalamic-pituitary-gonadal (HPG) axis. Recently, we showed that PNX-14 is downregulated in bitches with cystic endometrial hyperplasia and pyometra. The objective of this study was to determine the expression of Smim20, PNX-14, and its putative receptor GRP173 in the canine ovary (both healthy and those with ovarian cysts), periovarian adipose tissue (PAT) and in the endometrium during the oestrous cycle. The expression was analysed by RT-qPCR and Western blot. In tissue sections, peptides were localised by immunofluorescent assays, and blood plasma concentrations of PNX-14 were detected by EIA. The results demonstrated increased levels of PNX in bitches in the anestrus groups compared to diestrus animals. The expression of GPR173 increased in PAT during the diestrus phase and endometrial tissue in late diestrus bitches. In the ovary, strong signals of PNX-14 and GPR173 were detected in the luteal and follicular cells. Furthermore, bitches with cystic ovaries were characterised by elevated circulating PNX levels and a significantly higher expression of PNX and GPR173 in gonadal tissues, when compared with healthy animals. Moreover, a positive correlation between PNX and progesterone in the blood of healthy bitches was noted, which changed to a negative correlation in females affected by cystic ovaries. These studies expand the knowledge regarding the expression and localization of the PNX/GRP173 system in canine reproductive organs during physiological and pathological conditions.


Assuntos
Doenças do Cão , Hiperplasia Endometrial , Neuropeptídeos , Feminino , Animais , Cães , Peptídeos , Hiperplasia Endometrial/veterinária , Endométrio/metabolismo , Tecido Adiposo/metabolismo , Doenças do Cão/genética , Doenças do Cão/metabolismo
7.
Int J Mol Sci ; 24(7)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37047072

RESUMO

Neuropeptide B (NPB) affects energy homeostasis and metabolism by binding and activating NPBWR1 and NPBWR2 in humans and pigs. Recently, we reported that NPB promotes the adipogenesis of rat white and brown preadipocytes as well as 3T3-L1 cells. In the present study, we evaluated the effects of NPB on the proliferation and differentiation of white porcine preadipocytes into mature adipocytes. We identified the presence of NPB, NPBWR1, and NPBWR2 on the mRNA and protein levels in porcine white preadipocytes. During the differentiation process, NPB increased the mRNA expression of PPARγ, C/EBPß, C/EBPα, PPARγ, and C/EBPß protein production in porcine preadipocytes. Furthermore, NPB stimulated lipid accumulation in porcine preadipocytes. Moreover, NPB promoted the phosphorylation of the p38 kinase in porcine preadipocytes, but failed to induce ERK1/2 phosphorylation. NPB failed to stimulate the expression of C/EBPß in the presence of the p38 inhibitor. Taken together, we report that NPB promotes the differentiation of porcine preadipocytes via a p38-dependent mechanism.


Assuntos
Adipócitos , PPAR gama , Humanos , Ratos , Suínos , Animais , Camundongos , Adipócitos/metabolismo , PPAR gama/metabolismo , Diferenciação Celular , Adipogenia/genética , RNA Mensageiro/genética , Proliferação de Células , Células 3T3-L1
8.
Int J Mol Sci ; 23(17)2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36077198

RESUMO

Adropin is a peptide hormone encoded by Energy Homeostasis Associated gene. Adropin modulates energy homeostasis and metabolism of lipids and carbohydrates. There is growing evidence demonstrating that adropin enhances insulin sensitivity and lowers hyperlipidemia in obese mice. The aim of this study was to investigate the effects of daily administration of adropin for four weeks in mice with experimentally induced type 2 diabetes (T2D). Adropin improved glucose control without modulating insulin sensitivity. Adropin reduced body weight, size of adipocytes, blood levels of triacylglycerol and cholesterol in T2D mice. T2D mice treated with adropin had lower liver mass, reduced hepatic content of triacylglycerol and cholesterol. Furthermore, adropin attenuated elevated blood levels of hepatic enzymes (ALT, AST, GGT and ALP) in T2D mice. In T2D mice, adropin increased the circulating adiponectin level. Adropin had no effects on circulating insulin and glucagon levels and did not alter pancreatic islets morphology. These results suggest that adropin improves glucose control, lipid metabolism and liver functions in T2D. In conjunction with reduced lipid content in hepatocytes, these results render adropin as an interesting candidate in therapy of T2D.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Animais , Glicemia/metabolismo , Colesterol/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Fígado/metabolismo , Camundongos , Triglicerídeos/metabolismo
9.
Biochem Biophys Res Commun ; 627: 207-213, 2022 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-36055012

RESUMO

Spexin (SPX) is a newly identified neuropeptide, a natural ligand for the galanin receptors (GALR) 2/3, which is involved in maintaining physiological functions including female reproduction. One of the most common endocrine disorder in reproductive system is polycystic ovary syndrome (PCOS), however the role of SPX in PCOS is still unknown. The objective of this study was to determine the expression of mRNA and peptide levels of SPX and its receptors GALR2/3 in the hypothalamus and ovary (by real time PCR and Western blot) as well as plasma levels of SPX (ELISA) in letrozole - induced PCOS rats. We observed that SPX plasma level does not change in PCOS rats. In the hypothalamus transcript level of Spx and Galr3 were significantly higher in PCOS rats compared to the control, while mRNA of Galr2 and protein expression of GALR2/3 were lower. Moreover, expression of Spx and Galr2/3 mRNA as well as GALR2/3 peptide production were lower in the ovary of PCOS rats. In summary, while our results did not show differences in plasma SPX levels, we observed tissue-dependent significant differences in the SPX/GALR2/3 levels between PCOS and control rats, what indicates possible new mechanisms of PCOS neuroendocrinology.


Assuntos
Hormônios Peptídicos/metabolismo , Síndrome do Ovário Policístico , Receptor Tipo 3 de Galanina/metabolismo , Animais , Feminino , Humanos , Hipotálamo/metabolismo , Letrozol , Síndrome do Ovário Policístico/induzido quimicamente , RNA Mensageiro , Ratos , Receptor Tipo 2 de Galanina/metabolismo
10.
Cells ; 11(12)2022 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-35741029

RESUMO

The lingual mucosa in birds is covered with two specific types of multilayered epithelia, i.e., the para- and orthokeratinized epithelium, that differ structurally and functionally. Comprehensive information on proteins synthesized in keratinocyte during their cytodifferentiation in subsequent layers of multilayered epithelia in birds concerns only the epidermis and are missing the epithelia of the lingual mucosa. The aim of the present study was to perform an immunohistochemical (IHC) and molecular analysis (WB) of bird-specific alpha-keratin, keratin-associated proteins (KAPs), namely filaggrin and loricrin, as well as transglutaminase 1 in the para- and orthokeratinized epithelium covering the tongue in the domestic duck, goose, and turkey. The results reveal the presence of alpha-keratin and KAPs in both epithelia, which is a sign of the cornification process. In contrast to the epidermis, the main KAPs involved in the cornification process of the lingual epithelia in birds is loricrin. Stronger expression with KAPs and transglutaminase 1 in the orthokeratinized epithelium than in the parakeratinized epithelium may determine the formation of a more efficient protective mechanical barrier. The presence of alpha-keratin, KAPs, and transglutaminase 1 epitopes characteristic of epidermal cornification in both types of the lingual epithelia may prove that they are of ectodermal origin.


Assuntos
Queratinas , Língua , Animais , Aves , Epitélio/metabolismo , Queratinas/metabolismo , Transglutaminases
11.
Mol Immunol ; 147: 115-125, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35537355

RESUMO

INTRODUCTION: Atopic asthma and allergic rhinitis are common chronic inflammatory diseases affecting lower airways and nasal mucosa, respectively. Several reports demonstrated frequent co-occurrence of these two diseases, however, the exact molecular mechanism has not been described. The present study aimed to investigate if small non-coding RNA might be responsible for the co-occurrence of asthma and allergic rhinitis in an animal model of allergic airway inflammation. MATERIALS AND METHODS: As an in vivo model of allergic airway inflammation, we used Brown Norway rats exposed intranasally to house dust mite (HDM). Histological analysis, total IgE concentration, eosinophil counts and iNOS gene expression were determined to confirm inflammatory changes. Small RNA sequencing in the lung tissue and nasal epithelium was performed with TruSeq Small RNA Library Preparation Kit and analyzed using the BaseSpace tool. Validation of sequencing results was performed using qPCR. To assess the functional role of hsa-miR-223-3p, we transfected normal human bronchial epithelial (NHBE) cells with specific LNA-inhibitor and measured phosphorylated protein level of NF-kB with ELISA. Expression analysis of NF-kB pathway-related genes was performed using qPCR with SYBR Green and analyzed in DataAssist v3.01. Statistical analysis were done with STATISTICA version 13. RESULTS: We found 9 miRNA genes differentially expressed in the lungs of allergic rats. In nasal epithelium, only rno-miR-184 was upregulated in animals exposed to HDM. Validation with qPCR confirmed increased expression only for rno-miR-223-3p in the lungs from allergic rats. The expression of this miRNA was also increased in normal bronchial epithelial ALI cell culture stimulated with IL-13, but not in cells cultured in monolayer due to the low mRNA level of IL13RA1 and IL13RA2. Transfecting NHBE cells with hsa-miR-223-3p inhibitor increased the amount of phosphorylated NF-kB protein level and expression of MUC5AC, CCL24 and TSLP genes. CONCLUSIONS: These findings suggest that miRNAs that regulate allergic inflammation in the lungs and nasal epithelium are specific for upper and lower airways. Furthermore, our study provides new insight on the role of hsa-miR-223-3p, that via targeting NF-kB signaling pathway, regulates the expression of MUC5AC, CCL24 and TSLP. Taken together, our study suggests that miR-223-3p is a regulator of allergic inflammation and could potentially be used to develop novel and targeted therapy for asthma.


Assuntos
Asma , MicroRNAs , Rinite Alérgica , Animais , Asma/patologia , Inflamação/metabolismo , Pulmão/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , NF-kappa B/metabolismo , Mucosa Nasal/metabolismo , Pyroglyphidae , Ratos , Rinite Alérgica/metabolismo
12.
Anim Reprod Sci ; 238: 106931, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35121414

RESUMO

The most common uterine diseases affecting bitches are cystic endometrial hyperplasia (CEH) and pyometra. The neuropeptide phoenixin (PNX) and its receptor (GPR173) are potential key factors involved in the proliferative and inflammatory regulation of the reproductive system in females. This study aimed to evaluate the expression of PNX and GPR173 by qPCR, western blot and immunofluorescence assays in the endometrium of bitches suffering from CEH or pyometra compared to clinically healthy females. Additionally, PNX and progesterone (P4) plasma concentrations were analysed. The results showed a significantly lower expression levels of PNX and GPR173 (mRNA and protein production) in bitches with the CEH or pyometra groups compared to healthy animals. Immunofluorescence staining examination also confirmed a lower concentration of PNX and GPR173 signals in bitches with pathological uteri. Moreover, a lower concentration of PNX blood levels in bitches suffering from pyometra was observed. The PNX concentration was negatively correlated with P4 but only in healthy bitches. These results illustrate that the development of canine uterine disorders may cause a lower expression of PNX and its receptor GPR173.


Assuntos
Doenças do Cão , Hiperplasia Endometrial , Neuropeptídeos , Piometra , Animais , Doenças do Cão/patologia , Cães , Hiperplasia Endometrial/genética , Hiperplasia Endometrial/patologia , Hiperplasia Endometrial/veterinária , Endométrio/metabolismo , Feminino , Neuropeptídeos/genética , Piometra/patologia , Piometra/veterinária , Útero/metabolismo
13.
Biomedicines ; 9(10)2021 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-34680544

RESUMO

Small integral membrane protein 20/phoenixin (SMIM20/PNX) and its receptor GPR173 (G Protein-Coupled Receptor 173) play a role in the regulation of the hypothalamic-pituitary-gonadal axis (HPG). The aim of the study was to determine PNX, FSH, LH, and 17ß-estradiol association in women with endometriosis, and the expression of SMIM20/PNX signaling via GPR173. Serum PNX, FSH, LH, and 17ß-estradiol concentrations were measured by enzyme and electrochemiluminescence immunoassay. SMIM20/PNX and GPR173 expression in the eutopic and ectopic endometrium was assessed by qPCR and immunohistochemistry. Reduced PNX level, increased LH/FSH ratio and elevated 17ß-estradiol concentration were found in patients with endometriosis. No differences in SMIM20 expression were observed between the studied endometria. GPR173 expression was lower in ectopic than in eutopic endometria. SMIM20 expression was mainly restricted to stroma. GPR173 was detected in some eutopic and ectopic stromal cells and in eutopic glandular epithelial cells. Discriminant analysis indicates the diagnostic relevance of PNX and LH/FSH ratio in patients with endometriosis. In women with endometriosis, reduced PNX levels and GPR173 expression may be responsible for HPG axis dysregulation. These new insights may contribute to a better understanding of the pathophysiology of endometriosis and provide the basis for a new strategy for diagnosis and treatment of endometriosis.

14.
Biology (Basel) ; 10(10)2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34681131

RESUMO

MOTS-c peptide is a member of the group of mitochondria-derived peptides (MDP). It is a product of the open reading frame in the 12S RNA gene. Due to its features and functions in the body, this peptide is classified as a hormone. The first publications indicated that this hormone improves insulin sensitivity and lowers body weight in obese animals. This suggests that it may be an important peptide in maintaining the body's energy homeostasis. The aim of our work was to investigate the potential role of MOTS-c peptide during pregnancy, which is a condition prone to metabolic disorders. The research covered healthy, obese women and women with thyroid disorders. The obtained results indicated an increase in the concentration of MOTS-c in the blood of mothers and newborns in the obese group as compared to the healthy control group and a corresponding decrease in the concentration of this peptide in mothers and newborns in the group with hypothyroidism compared to the obese group. Moreover, we also observed a strong positive correlation between the concentration of MOTS-c in maternal blood and in umbilical cord blood. In summary, the MOTS-c peptide shows changes in blood concentration in various physiological states and may, in the future, become an important tool in the fight against metabolic diseases such as obesity or type 2 diabetes.

15.
Acta Histochem ; 123(5): 151751, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34229193

RESUMO

Adropin (ADR) plays a role in metabolism regulation and its alterations in obesity and diabetes have been found. Treatment with ADR was beneficial in metabolic diseases, and physical exercise increased ADR concentrations in obese patients. However, data on the distribution of ADR in the brain are sparse. The role of metabolic status and physical exercise on its expression in the brain is undiscovered. We hypothesized that diabetes type 2 (DM2) and/or exercise will alter number of ADR-immunoractive (-ir) cells in the rat brain. Animals were divided into groups: diabetes type 2 (receiving high-fat diet and injections of streptozotocin) and control (fed laboratory chow diet; C). Rats were further divided into: running group (2 weeks of forced exercise on a treadmill) and non-running group. Body mass, metabolic and hormonal profiles were assessed. Immunohistochemistry was run to study ADR-ir cells in the brain. We found that: 1) in DM2 animals, running decreased insulin and increased glucose concentrations; 2) in C rats, running decreased insulin concentrations and had no effect on glucose concentration in blood; 3) running increased corticosterone (CORT) concentrations in DM2 and C rats; 4) ADR-ir cells were detected in the hippocampus and ADR-ir fibers in the arcuate nucleus of the hypothalamus, which is a novel location; 5) metabolic status and running, however, did not change number of these cells. We concluded that 2 weeks of forced moderate intensity locomotor training induced stress response present as increased concentration of CORT and did not influence number of ADR-ir cells in the brain.


Assuntos
Proteínas Sanguíneas/metabolismo , Corticosterona/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Hipocampo/metabolismo , Movimento , Peptídeos/metabolismo , Condicionamento Físico Animal , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Peso Corporal , Encéfalo/metabolismo , Diabetes Mellitus Experimental , Glucose/metabolismo , Hipotálamo/metabolismo , Insulina/metabolismo , Masculino , Perfusão , Ratos , Ratos Wistar
16.
Int J Mol Sci ; 22(12)2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34205710

RESUMO

Neuropeptide B (NPB) is a peptide hormone that was initially described in 2002. In humans, the biological effects of NPB depend on the activation of two G protein-coupled receptors, NPBWR1 (GPR7) and NPBWR2 (GPR8), and, in rodents, NPBWR1. NPB and its receptors are expressed in the central nervous system (CNS) and in peripheral tissues. NPB is also present in the circulation. In the CNS, NPB modulates appetite, reproduction, pain, anxiety, and emotions. In the peripheral tissues, NPB controls secretion of adrenal hormones, pancreatic beta cells, and various functions of adipose tissue. Experimental downregulation of either NPB or NPBWR1 leads to adiposity. Here, we review the literature with regard to NPB-dependent control of metabolism and energy homeostasis.


Assuntos
Apetite/fisiologia , Encéfalo/metabolismo , Metabolismo Energético , Neuropeptídeos/metabolismo , Animais , Glucose/metabolismo , Homeostase , Humanos , Metabolismo dos Lipídeos , Reprodução
17.
Animals (Basel) ; 11(6)2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34205820

RESUMO

Cystic endometrial hyperplasia (CEH) and pyometra are the most frequently diagnosed uterine diseases affecting bitches of different ages. Transforming growth factor beta (TGF-ß) has been classified in females as a potential regulator of many endometrial changes during the estrous cycle or may be involved in pathological disorders. The aim of this study was to determine the expression of TGF-ß1, -ß2 and -ß3 in the endometrium of bitches suffering from CEH or a CEH-pyometra complex compared to clinically healthy females (control group; CG). A significantly increased level of TGF-ß1 mRNA expression was observed in the endometrium with CEH-pyometra compared to CEH and CG. Protein production of TGF-ß1 was identified only in the endometrium of bitches with CEH-pyometra. An increase in TGF-ß3 mRNA expression was observed in all the studied groups compared to CG. The expression of TGF-ß2 mRNA was significantly higher in CEH and lower in CEH-pyometra uteri. The results indicate the presence of TGF-ß cytokines in canine endometrial tissues affected by proliferative and degenerative changes. However, among all TGF-ß isoforms, TGF-ß1 could potentially be a key factor involved in the regulation of the endometrium in bitches with CEH-pyometra complex.

18.
Genes (Basel) ; 12(6)2021 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-34199277

RESUMO

Adropin is a peptide hormone which modulates energy homeostasis and metabolism. In animals with diet-induced obesity, adropin attenuates adiposity and improves lipid and glucose homeostasis. Adropin promotes the proliferation of rodent white preadipocytes and suppresses their differentiation into adipocytes. By contrast, the effects of adropin on mature white adipocytes are unknown. Therefore, we aimed to evaluate the effects of adropin on lipolysis, lipogenesis and glucose uptake in white rodent adipocytes. We assessed the effects of adropin on the mRNA expression of adiponectin, resistin and visfatin. White preadipocytes were isolated from male Wistar rats. Differentiated 3T3-L1 cells were used as a surrogate model of white adipocytes. Lipolysis was measured by the evaluation of glycerol and free fatty acid secretion using colorimetric kits. The effects of adropin on lipogenesis and glucose uptake were measured using radioactive-labelled glucose. The expression of adipokine mRNA was studied using real-time PCR. Our results show that adropin slightly promotes lipolysis in rat adipocytes and 3T3-L1 cells. Adropin suppresses lipogenesis in rat adipocytes without influencing glucose uptake. In addition, adropin stimulates adiponectin mRNA expression and suppresses the expression of resistin and visfatin. These results indicate that adropin may be involved in controlling lipid metabolism and adipokine expression in white rodent adipocytes.


Assuntos
Adipócitos Brancos/efeitos dos fármacos , Adipocinas/metabolismo , Glucose/metabolismo , Lipogênese , Lipólise , Peptídeos/farmacologia , Células 3T3-L1 , Adipócitos Brancos/metabolismo , Adipocinas/genética , Animais , Células Cultivadas , Ácidos Graxos/metabolismo , Glicerol/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/química , Masculino , Camundongos , Peptídeos/química , Ratos , Ratos Wistar
19.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1866(11): 159018, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34332074

RESUMO

Neuronostatin is a peptide hormone encoded by the somatostatin gene. Biological effects of neuronostatin are mediated through activation of GPR107. There is evidence indicating that neuronostatin modulates energy homeostasis by suppressing food intake and insulin secretion, while stimulating glucagon secretion. While it was found that neuronostatin receptor is expressed in white adipose tissue, the role of neuronostatin in controlling adipose tissue formation is unknown. The aim of this study is to investigate the effects of neuronostatin on proliferation and differentiation of rat primary preadipocytes and 3T3-L1 cells. We found that neuronostatin receptor GPR107 is expressed in rat preadipocytes and 3T3-L1 cells. Neuronostatin promotes proliferation of preadipocytes via AKT activation. Downregulation of GPR107 mRNA expression and protein production results in an attenuation of neuronostatin-induced stimulation of preadipocyte proliferation. Moreover, neuronostatin reduces intracellular lipid content and the expression of adipogenesis-modulating genes C/ebpα, C/ebpß, Pparγ, and Fabp4. In summary, these results show that neuronostatin, AKT-dependently, stimulates the proliferation of preadipocytes via GPR107. In contrast, neuronostatin inhibits the differentiation of preadipocytes into mature adipocytes.


Assuntos
Adipócitos/metabolismo , Fragmentos de Peptídeos/metabolismo , Hormônios Peptídicos/metabolismo , Somatostatina/metabolismo , Células 3T3-L1 , Animais , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
20.
Genes (Basel) ; 12(5)2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-34067710

RESUMO

Peptide hormones play a prominent role in controlling energy homeostasis and metabolism. They have been implicated in controlling appetite, the function of the gastrointestinal and cardiovascular systems, energy expenditure, and reproduction. Furthermore, there is growing evidence indicating that peptide hormones and their receptors contribute to energy homeostasis regulation by interacting with white and brown adipose tissue. In this article, we review and discuss the literature addressing the role of selected peptide hormones discovered in the 21st century (adropin, apelin, elabela, irisin, kisspeptin, MOTS-c, phoenixin, spexin, and neuropeptides B and W) in controlling white and brown adipogenesis. Furthermore, we elaborate how these hormones control adipose tissue functions in vitro and in vivo.


Assuntos
Tecido Adiposo/metabolismo , Hormônios Peptídicos/metabolismo , Animais , Homeostase , Humanos , Hormônios Peptídicos/química , Hormônios Peptídicos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA