Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Photochem Photobiol Sci ; 20(12): 1621-1633, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34822125

RESUMO

Photodeoxygenation of dibenzothiophene S-oxide and its derivatives have been used to generate atomic oxygen [O(3P)] to examine its effect on proteins, nucleic acids, and lipids. The unique reactivity and selectivity of O(3P) have shown distinct oxidation products and outcomes in biomolecules and cell-based studies. To understand the scope of its global impact on the cell, we treated MDA-MB-231 cells with 2,8-diacetoxymethyldibenzothiophene S-oxide and UV-A light to produce O(3P) without targeting a specific cell organelle. Cellular responses to O(3P)-release were analyzed using cell viability and cell cycle phase determination assays. Cell death was observed when cells were treated with higher concentrations of sulfoxides and UV-A light. However, significant differences in cell cycle phases due to UV-A irradiation of the sulfoxide were not observed. We further performed RNA-Seq analysis to study the underlying biological processes at play, and while UV-irradiation itself influenced gene expression, there were 9 upregulated and 8 downregulated genes that could be attributed to photodeoxygenation.


Assuntos
Óxidos , Tiofenos , Oxirredução , Tiofenos/farmacologia , Raios Ultravioleta
2.
Bioorg Chem ; 105: 104442, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33197850

RESUMO

Photodeoxygenation of Dibenzothiophene-S-oxide (DBTO) in UV-A light produces atomic oxygen [O(3P)] and the corresponding sulfide, dibenzothiophene (DBT). Recently, DBTO has been derivatized to study the effect of UV-A light-driven photodeoxygenation in lipids, proteins, and nucleic acids. In this study, two DBTO derivatives with triphenylphosphonium groups were synthesized to promote mitochondrial accumulation. The sulfone analogs of these derivatives were also synthesized and used as fluorescent mitochondrial dyes to assess localization in mitochondria of HeLa cells. These derivatives were then used to study the effect of photodeoxygenation on MDA-MB-231 breast cancer cell line using cell viability assays, cell cycle phase determination tests, and RNA-Seq analysis. The DBTO derivatives were found to significantly decrease cell viability only after UV-A irradiation as a result of generating corresponding sulfides that were found to significantly affect gene expression and cell cycle.


Assuntos
Antineoplásicos/síntese química , Citotoxinas/síntese química , Compostos Organofosforados/síntese química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Sequência de Bases , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Citotoxinas/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/ultraestrutura , Compostos Organofosforados/farmacologia , Oxigênio/química , Oxigênio/metabolismo , Processos Fotoquímicos , Espécies Reativas de Oxigênio/química , Espécies Reativas de Oxigênio/metabolismo , Tiofenos/química , Raios Ultravioleta
3.
J Org Chem ; 83(22): 14063-14068, 2018 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-30339008

RESUMO

Asymmetric dibenzothiophene S, S-dioxides (DBTOOs) were synthesized and their photophysical properties examined. Through examination, the molecules fluoresced at wavelengths between 371 and 492 nm with quantum yields of fluorescence nearing 0.59. Three of the sulfonic acid sodium salt analogues were chosen to be introduced to HeLa cells, resulting in illumination of the nucleus by fluorescent microscopy. These compounds function as nuclear stains while also affording the ability to predict the localization of the corresponding sulfoxide precursor to ground-state atomic oxygen.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA