Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biochemistry (Mosc) ; 89(2): 299-312, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38622097

RESUMO

A decrease in muscle mass and its functionality (strength, endurance, and insulin sensitivity) is one of the integral signs of aging. One of the triggers of aging is an increase in the production of mitochondrial reactive oxygen species. Our study was the first to examine age-dependent changes in the production of mitochondrial reactive oxygen species related to a decrease in the proportion of mitochondria-associated hexokinase-2 in human skeletal muscle. For this purpose, a biopsy was taken from m. vastus lateralis in 10 young healthy volunteers and 70 patients (26-85 years old) with long-term primary arthrosis of the knee/hip joint. It turned out that aging (comparing different groups of patients), in contrast to inactivity/chronic inflammation (comparing young healthy people and young patients), causes a pronounced increase in peroxide production by isolated mitochondria. This correlated with the age-dependent distribution of hexokinase-2 between mitochondrial and cytosolic fractions, a decrease in the rate of coupled respiration of isolated mitochondria and respiration when stimulated with glucose (a hexokinase substrate). It is discussed that these changes may be caused by an age-dependent decrease in the content of cardiolipin, a potential regulator of the mitochondrial microcompartment containing hexokinase. The results obtained contribute to a deeper understanding of age-related pathogenetic processes in skeletal muscles and open prospects for the search for pharmacological/physiological approaches to the correction of these pathologies.


Assuntos
Hexoquinase , Mitocôndrias , Humanos , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Espécies Reativas de Oxigênio/metabolismo , Hexoquinase/metabolismo , Músculo Esquelético/metabolismo , Envelhecimento/fisiologia , Mitocôndrias Musculares/metabolismo
2.
Int J Mol Sci ; 24(16)2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37628720

RESUMO

Cellular respiration is associated with at least six distinct but intertwined biological functions. (1) biosynthesis of ATP from ADP and inorganic phosphate, (2) consumption of respiratory substrates, (3) support of membrane transport, (4) conversion of respiratory energy to heat, (5) removal of oxygen to prevent oxidative damage, and (6) generation of reactive oxygen species (ROS) as signaling molecules. Here we focus on function #6, which helps the organism control its mitochondria. The ROS bursts typically occur when the mitochondrial membrane potential (MMP) becomes too high, e.g., due to mitochondrial malfunction, leading to cardiolipin (CL) oxidation. Depending on the intensity of CL damage, specific programs for the elimination of damaged mitochondria (mitophagy), whole cells (apoptosis), or organisms (phenoptosis) can be activated. In particular, we consider those mechanisms that suppress ROS generation by enabling ATP synthesis at low MMP levels. We discuss evidence that the mild depolarization mechanism of direct ATP/ADP exchange across mammalian inner and outer mitochondrial membranes weakens with age. We review recent data showing that by protecting CL from oxidation, mitochondria-targeted antioxidants decrease lethality in response to many potentially deadly shock insults. Thus, targeting ROS- and CL-dependent pathways may prevent acute mortality and, hopefully, slow aging.


Assuntos
Mitocôndrias , Respiração , Animais , Espécies Reativas de Oxigênio , Envelhecimento , Cardiolipinas , Trifosfato de Adenosina , Mamíferos
3.
Biosystems ; 215-216: 104650, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35218874

RESUMO

Efim Liberman was a proud scholar of biophysics-a genuine scientific discipline that strives for high accuracy in contrast to descriptive biology. He played a major role at the Pushchino Institute of Biophysics and participated in Gelfand's famous seminar. He developed a groundbreaking model of neural impulses and discovered the decisive role of cell membranes and membrane channels in neural cell excitation. Efim Liberman studied artificial and biological membranes, and conducted seminal experiments to proof Mitchell's hypothesis of oxidative phosphorylation. He discovered penetrating ions in pioneering studies of mitochondrial electrical energetics. He put forward a trailblazing idea of an intracell analog-digital molecular computer capable of using genetically coded algorithms for processing information. His ideas and research gave impetus to academic studies in various areas, such as a role of small RNАs as universal regulators of life. Efim Liberman was an outstanding, versatile and bright personality whose lifelong journey was to pursue the comprehension of the Universe and to understand the phenomenon of life.


Assuntos
Compreensão , Biofísica
4.
Int J Mol Sci ; 23(4)2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35216079

RESUMO

As inhabitants of soda lakes, Thioalkalivibrio versutus are halo- and alkaliphilic bacteria that have previously been shown to respire with the first demonstrated Na+-translocating cytochrome-c oxidase (CO). The enzyme generates a sodium-motive force (Δs) as high as -270 mV across the bacterial plasma membrane. However, in these bacteria, operation of the possible Δs consumers has not been proven. We obtained motile cells and used them to study the supposed Na+ energetic cycle in these bacteria. The resulting motility was activated in the presence of the protonophore 2-heptyl-4-hydroxyquinoline N-oxide (HQNO), in line with the same effect on cell respiration, and was fully blocked by amiloride-an inhibitor of Na+-motive flagella. In immotile starving bacteria, ascorbate triggered CO-mediated respiration and motility, both showing the same dependence on sodium concentration. We concluded that, in T. versutus, Na+-translocating CO and Na+-motive flagella operate in the Na+ energetic cycle mode. Our research may shed light on the energetic reason for how these bacteria are confined to a narrow chemocline zone and thrive in the extreme conditions of soda lakes.


Assuntos
Ectothiorhodospiraceae/metabolismo , Sódio/metabolismo , Amilorida/metabolismo , Membrana Celular/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Flagelos/metabolismo , Lagos/microbiologia
5.
Front Mol Biosci ; 8: 660959, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34079817

RESUMO

Most research on mechanisms of aging is being conducted in a very limited number of classical model species, i.e., laboratory mouse (Mus musculus), rat (Rattus norvegicus domestica), the common fruit fly (Drosophila melanogaster) and roundworm (Caenorhabditis elegans). The obvious advantages of using these models are access to resources such as strains with known genetic properties, high-quality genomic and transcriptomic sequencing data, versatile experimental manipulation capabilities including well-established genome editing tools, as well as extensive experience in husbandry. However, this approach may introduce interpretation biases due to the specific characteristics of the investigated species, which may lead to inappropriate, or even false, generalization. For example, it is still unclear to what extent knowledge of aging mechanisms gained in short-lived model organisms is transferable to long-lived species such as humans. In addition, other specific adaptations favoring a long and healthy life from the immense evolutionary toolbox may be entirely missed. In this review, we summarize the specific characteristics of emerging animal models that have attracted the attention of gerontologists, we provide an overview of the available data and resources related to these models, and we summarize important insights gained from them in recent years. The models presented include short-lived ones such as killifish (Nothobranchius furzeri), long-lived ones such as primates (Callithrix jacchus, Cebus imitator, Macaca mulatta), bathyergid mole-rats (Heterocephalus glaber, Fukomys spp.), bats (Myotis spp.), birds, olms (Proteus anguinus), turtles, greenland sharks, bivalves (Arctica islandica), and potentially non-aging ones such as Hydra and Planaria.

6.
Biochemistry (Mosc) ; 86(4): 433-448, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33941065

RESUMO

This review discusses genetic and molecular pathways that link circadian timing with metabolism, resulting in the emergence of positive and negative regulatory feedback loops. The Nrf2 pathway is believed to be a component of the anti-aging program responsible for the healthspan and longevity. Nrf2 enables stress adaptation by activating cell antioxidant defense and other metabolic processes via control of expression of over 200 target genes in response to various types of stress. The GSK3 system represents a "regulating valve" that controls fine oscillations in the Nrf2 level, unlike Keap1, which prevents significant changes in the Nrf2 content in the absence of oxidative stress and which is inactivated by the oxidative stress. Furthermore, GSK3 modifies core circadian clock proteins (Bmal1, Clock, Per, Cry, and Rev-erbα). Phosphorylation by GSK3 leads to the inactivation and degradation of circadian rhythm-activating proteins (Bmal1 and Clock) and vice versa to the activation and nuclear translocation of proteins suppressing circadian rhythms (Per and Rev-erbα) with the exception of Cry protein, which is likely to be implicated in the fine tuning of biological clock. Functionally, GSK3 appears to be one of the hubs in the cross-regulation of circadian rhythms and antioxidant defense. Here, we present the data on the crosstalk between the most powerful cell antioxidant mechanism, the Nrf2 system, and the biorhythm-regulating system in mammals, including the impact of GSK3 overexpression and knockout on the Nrf2 signaling. Understanding the interactions between the regulatory cascades linking homeostasis maintenance and cell response to oxidative stress will help in elucidating molecular mechanisms that underlie aging and longevity.


Assuntos
Ritmo Circadiano , Glicogênio Sintase Quinase 3 beta/metabolismo , Longevidade , Envelhecimento , Animais , Quinase 3 da Glicogênio Sintase/metabolismo , Quinase 3 da Glicogênio Sintase/fisiologia , Glicogênio Sintase Quinase 3 beta/fisiologia , Humanos , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Transdução de Sinais
7.
Aging (Albany NY) ; 12(6): 5566-5584, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32229707

RESUMO

Homo sapiens and naked mole rats (Heterocephalus glaber) are vivid examples of social mammals that differ from their relatives in particular by an increased lifespan and a large number of neotenic features. An important fact for biogerontology is that the mortality rate of H. glaber (a maximal lifespan of more than 32 years, which is very large for such a small rodent) negligibly grows with age. The same is true for modern people in developed countries below the age of 60. It is important that the juvenilization of traits that separate humans from chimpanzees evolved over thousands of generations and millions of years. Rapid advances in technology resulted in a sharp increase in the life expectancy of human beings during the past 100 years. Currently, the human life expectancy has exceeded 80 years in developed countries. It cannot be excluded that the potential for increasing life expectancy by an improvement in living conditions will be exhausted after a certain period of time. New types of geroprotectors should be developed that protect not only from chronic phenoptosis gradual poisoning of the body with reactive oxygen species (ROS) but also from acute phenoptosis, where strong increase in the level of ROS immediately kills an already aged individual. Geroprotectors might be another anti-aging strategy along with neoteny (a natural physiological phenomenon) and technical progress.


Assuntos
Envelhecimento/fisiologia , Longevidade/fisiologia , Animais , Feminino , Humanos , Masculino , Ratos-Toupeira/fisiologia , Espécies Reativas de Oxigênio
8.
Biochim Biophys Acta Bioenerg ; 1861(8): 148210, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32305410

RESUMO

An increase in the production of reactive oxygen species (ROS) in mitochondria due to targeted delivery of redox active compounds may be useful in studies of modulation of cell functions by mitochondrial ROS. Recently, the mitochondria-targeted derivative of menadione (MitoK3) was synthesized. However, MitoK3 did not induce mitochondrial ROS production and lipid peroxidation while exerting significant cytotoxic action. Here we synthesized 1,4-naphthoquinone conjugated with alkyltriphenylphosphonium (SkQN) as a prototype of mitochondria-targeted prooxidant, and its redox properties, interactions with isolated mitochondria, yeast cells and various human cell lines were investigated. According to electrochemical measurements, SkQN was more active redox agent and, due to the absence of methyl group in the naphthoquinone ring, more reactive as electrophile than MitoK3. SkQN (but not MitoK3) stimulated hydrogen peroxide production in isolated mitochondria. At low concentrations, SkQN stimulated state 4 respiration in mitochondria, decreased membrane potential, and blocked ATP synthesis, being more efficient uncoupler of oxidative phosphorylation than MitoK3. In yeast cells, SkQN decreased cell viability and induced oxidative stress and mitochondrial fragmentation. SkQN killed various tumor cells much more efficiently than MitoK3. Since many tumors are characterized by increased oxidative stress, the use of new mitochondria-targeted prooxidants may be a promising strategy for anticancer therapy.


Assuntos
Antineoplásicos/farmacologia , Mitocôndrias/efeitos dos fármacos , Naftoquinonas/farmacologia , Espécies Reativas de Oxigênio/farmacologia , Antineoplásicos/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Peróxido de Hidrogênio/metabolismo , Naftoquinonas/química , Fosforilação Oxidativa/efeitos dos fármacos , Oxigênio/metabolismo , Compostos de Fósforo/química , Espécies Reativas de Oxigênio/química
9.
Proc Natl Acad Sci U S A ; 117(12): 6491-6501, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32152094

RESUMO

The mitochondria of various tissues from mice, naked mole rats (NMRs), and bats possess two mechanistically similar systems to prevent the generation of mitochondrial reactive oxygen species (mROS): hexokinases I and II and creatine kinase bound to mitochondrial membranes. Both systems operate in a manner such that one of the kinase substrates (mitochondrial ATP) is electrophoretically transported by the ATP/ADP antiporter to the catalytic site of bound hexokinase or bound creatine kinase without ATP dilution in the cytosol. One of the kinase reaction products, ADP, is transported back to the mitochondrial matrix via the antiporter, again through an electrophoretic process without cytosol dilution. The system in question continuously supports H+-ATP synthase with ADP until glucose or creatine is available. Under these conditions, the membrane potential, ∆ψ, is maintained at a lower than maximal level (i.e., mild depolarization of mitochondria). This ∆ψ decrease is sufficient to completely inhibit mROS generation. In 2.5-y-old mice, mild depolarization disappears in the skeletal muscles, diaphragm, heart, spleen, and brain and partially in the lung and kidney. This age-dependent decrease in the levels of bound kinases is not observed in NMRs and bats for many years. As a result, ROS-mediated protein damage, which is substantial during the aging of short-lived mice, is stabilized at low levels during the aging of long-lived NMRs and bats. It is suggested that this mitochondrial mild depolarization is a crucial component of the mitochondrial anti-aging system.


Assuntos
Envelhecimento , Mitocôndrias/fisiologia , Membranas Mitocondriais/fisiologia , Difosfato de Adenosina/metabolismo , Animais , Quirópteros , Creatina/metabolismo , Transporte de Elétrons , Embrião de Mamíferos , Glucose/metabolismo , Hexoquinase/metabolismo , Potencial da Membrana Mitocondrial , Camundongos , Mitocôndrias/metabolismo , Membranas Mitocondriais/enzimologia , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Ratos-Toupeira , Especificidade de Órgãos , Espécies Reativas de Oxigênio/metabolismo , Especificidade da Espécie
10.
Cells ; 9(3)2020 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-32183238

RESUMO

Electron microscopic study of cardiomyocytes taken from healthy Wistar and OXYS rats and naked mole rats (Heterocephalus glaber) revealed mitochondria in nuclei that lacked part of the nuclear envelope. The direct interaction of mitochondria with nucleoplasm is shown. The statistical analysis of the occurrence of mitochondria in cardiomyocyte nuclei showed that the percentage of nuclei with mitochondria was roughly around 1%, and did not show age and species dependency. Confocal microscopy of normal rat cardiac myocytes revealed a branched mitochondrial network in the vicinity of nuclei with an organization different than that of interfibrillar mitochondria. This mitochondrial network was energetically functional because it carried the membrane potential that responded by oscillatory mode after photodynamic challenge. We suggest that the presence of functional mitochondria in the nucleus is not only a consequence of certain pathologies but rather represents a normal biological phenomenon involved in mitochondrial/nuclear interactions.


Assuntos
Núcleo Celular/fisiologia , Microscopia Eletrônica/métodos , Mitocôndrias Cardíacas/fisiologia , Membrana Nuclear/fisiologia , Animais , Microscopia Confocal , Modelos Animais , Ratos-Toupeira , Ratos , Ratos Wistar
11.
Antioxidants (Basel) ; 8(6)2019 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-31197113

RESUMO

Induced and frequently unwanted alterations in the mitochondrial structure and functions are a key component of the pathological cascade in many kidney pathologies, including those associated with acute damage. One of the principal pathogenic elements causing mitochondrial dysfunction in Acute Kidney Injury (AKI) is oxidative stress. After ischemia and nephrotoxic action of drugs, sepsis and systemic inflammation are the most frequent causes of AKI. As the kidney suffers from oxidative stress during sepsis, one of the most promising approaches to alleviate such damaging consequences is the use of antioxidants. Considering administration of lipopolysaccharide (LPS) as a model of sepsis, we demonstrate that the mitochondria of neonatal renal tissue are severely affected by LPS-induced AKI, with pathological ultrastructural changes observed in both the mitochondria of the renal tubular epithelium and the vascular endothelium. Upon mitochondrial damage, we evaluated the effect of the mitochondria-targeted antioxidant plastoquinol decylrhodamine 19 (SkQR1) on the development of acute renal failure in newborn rats associated with systemic inflammation induced by the administration of LPS. We found that SkQR1 administration 3 h before LPS led to decreased urinal expression of the AKI marker neutrophil gelatinase-associated lipocalin 2 (NGAL), in addition to a decrease in urea and creatinine levels in the blood. Additionally, an observed impairment of proliferative activity in the neonatal kidney caused by LPS treatment was also prevented by the treatment of rat pups with SkQR1. Thus, one of the key events for renal tissue damage in neonatal sepsis is an alteration in the structure and function of the mitochondria and the mitochondria-targeted antioxidant SkQR1 is an effective nephroprotective agent, which protects the neonatal kidney from sepsis-induced AKI.

12.
Brain Res Bull ; 148: 100-108, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30935979

RESUMO

The protective effect of SkQR1, a mitochondria-targeted antioxidant, was investigated on the model of focal one-sided traumatic brain injury (TBI) of the sensorimotor cortex region from 1 to 7 days after the injury. TBI caused a reliable disruption of the functions of the limbs contralateral to injury focus. The intravenous single injection of SkQR1 (250 nmol/kg) but not C12R1 (a SkQR1 homologue devoid of the antioxidant group) 30 min after TBI reduced the impairment of the motor functions of the limbs. A statistically significant improvement in limb function in animals was shown using 3 different tests: limb-placing test, beam-walking test and grip strength test. A pronounced therapeutic effect appeared on the 1th day and lasted until the end of the experiment - the 7th day after TBI. Histopathological examination showed that in the group of animals that did not receive SkQR1 in the marginal layer of the lesion there was a marked increase in astroglial expression, infiltration with segmented neutrophils, and poor survivability of neurons compared with animals treated with SkQR1. The obtained results demonstrate that the single use of plastoquinone-containing mitochondria-targeted antioxidant SkQR1 at the early stages of development of traumatic brain damage can reduce TBI-related disruptions of limb functions, and that mechanisms of the brain damage after trauma are dependent on the production of mitochondrial reactive oxygen species.


Assuntos
Lesões Encefálicas Traumáticas/tratamento farmacológico , Plastoquinona/análogos & derivados , Rodaminas/farmacologia , Administração Intravenosa , Animais , Antioxidantes/farmacologia , Encéfalo/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Masculino , Mitocôndrias/metabolismo , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Plastoquinona/metabolismo , Plastoquinona/farmacologia , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Rodaminas/metabolismo
13.
Molecules ; 23(8)2018 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-30060443

RESUMO

Neonatal hypoxia⁻ischemia is one of the main causes of mortality and disability of newborns. To study the mechanisms of neonatal brain cell damage, we used a model of neonatal hypoxia⁻ischemia in seven-day-old rats, by annealing of the common carotid artery with subsequent hypoxia of 8% oxygen. We demonstrate that neonatal hypoxia⁻ischemia causes mitochondrial dysfunction associated with high production of reactive oxygen species, which leads to oxidative stress. Targeted delivery of antioxidants to the mitochondria can be an effective therapeutic approach to treat the deleterious effects of brain hypoxia⁻ischemia. We explored the neuroprotective properties of the mitochondria-targeted antioxidant SkQR1, which is the conjugate of a plant plastoquinone and a penetrating cation, rhodamine 19. Being introduced before or immediately after hypoxia⁻ischemia, SkQR1 affords neuroprotection as judged by the diminished brain damage and recovery of long-term neurological functions. Using vital sections of the brain, SkQR1 has been shown to reduce the development of oxidative stress. Thus, the mitochondrial-targeted antioxidant derived from plant plastoquinone can effectively protect the brain of newborns both in pre-ischemic and post-stroke conditions, making it a promising candidate for further clinical studies.


Assuntos
Hipóxia-Isquemia Encefálica/prevenção & controle , Fármacos Neuroprotetores/administração & dosagem , Estresse Oxidativo/efeitos dos fármacos , Plastoquinona/análogos & derivados , Rodaminas/administração & dosagem , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Hipóxia-Isquemia Encefálica/metabolismo , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/fisiologia , Fármacos Neuroprotetores/farmacologia , Plastoquinona/administração & dosagem , Plastoquinona/farmacologia , Ratos , Espécies Reativas de Oxigênio/metabolismo , Recuperação de Função Fisiológica/efeitos dos fármacos , Rodaminas/farmacologia
14.
Autophagy ; 14(5): 921-924, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29458285

RESUMO

Mitochondrial dysfunction plays a crucial role in the macroautophagy/autophagy cascade. In a recently published study Sun et al. described the induction of autophagy by the membranophilic triphenylphosphonium (TPP)-based cation 10-(6'-ubiquinonyl) decyltriphenylphosphonium (MitoQ) in HepG2 cells (Sun C, et al. "MitoQ regulates autophagy by inducing a pseudo-mitochondrial membrane potential [PMMP]", Autophagy 2017, 13:730-738.). Sun et al. suggested that MitoQ adsorbed to the inner mitochondrial membrane with its cationic moiety remaining in the intermembrane space, adding a large number of positive charges and establishing a "pseudo-mitochondrial membrane potential," which blocked the ATP synthase. Here we argue that the suggested mechanism for generation of the "pseudo-mitochondrial membrane potential" is physically implausible and contradicts earlier findings on the electrophoretic displacements of membranophilic cations within and through phospholipid membranes. We provide evidence that TPP-cations dissipated the mitochondrial membrane potential in HepG2 cells and that the induction of autophagy in carcinoma cells by TPP-cations correlated with the uncoupling of oxidative phosphorylation. The mild uncoupling of oxidative phosphorylation by various mitochondria-targeted penetrating cations may contribute to their reported therapeutic effects via inducing both autophagy and mitochondria-selective mitophagy.


Assuntos
Autofagia , Potencial da Membrana Mitocondrial , Mitocôndrias , Membranas Mitocondriais , Mitofagia
15.
Oxid Med Cell Longev ; 2017: 6412682, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29104729

RESUMO

Mitochondrial-derived reactive oxygen species have been deemed an important contributor in sepsis pathogenesis. We investigated whether two mitochondria-targeted antioxidants (mtAOX; SkQ1 and MitoTEMPO) improved long-term outcome, lessened inflammation, and improved organ homeostasis in polymicrobial murine sepsis. 3-month-old female CD-1 mice (n = 90) underwent cecal ligation and puncture (CLP) and received SkQ1 (5 nmol/kg), MitoTEMPO (50 nmol/kg), or vehicle 5 times post-CLP. Separately, 52 SkQ1-treated CLP mice were sacrificed at 24 h and 48 h for additional endpoints. Neither MitoTEMPO nor SkQ1 exerted any protracted survival benefit. Conversely, SkQ1 exacerbated 28-day mortality by 29%. CLP induced release of 10 circulating cytokines, increased urea, ALT, and LDH, and decreased glucose but irrespectively of treatment. Similar occurred for CLP-induced lymphopenia/neutrophilia and the NO blood release. At 48 h post-CLP, dying mice had approximately 100-fold more CFUs in the spleen than survivors, but this was not SkQ1 related. At 48 h, macrophage and granulocyte counts increased in the peritoneal lavage but irrespectively of SkQ1. Similarly, hepatic mitophagy was not altered by SkQ1 at 24 h. The absence of survival benefit of mtAOX may be due to the extended treatment and/or a relatively moderate-risk-of-death CLP cohort. Long-term effect of mtAOX in abdominal sepsis appears different to sepsis/inflammation models arising from other body compartments.


Assuntos
Antioxidantes/metabolismo , Mitocôndrias/metabolismo , Compostos Organofosforados/metabolismo , Piperidinas/metabolismo , Plastoquinona/análogos & derivados , Animais , Modelos Animais de Doenças , Feminino , Camundongos , Plastoquinona/metabolismo , Sepse
16.
Oxid Med Cell Longev ; 2017: 6408278, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28761623

RESUMO

Oxidative stress is widely recognized as an important factor in the delayed wound healing in diabetes. However, the role of mitochondrial reactive oxygen species in this process is unknown. It was assumed that mitochondrial reactive oxygen species are involved in many wound-healing processes in both diabetic humans and animals. We have applied the mitochondria-targeted antioxidant 10-(6'-plastoquinonyl)decyltriphenylphosphonium (SkQ1) to explore the role of mitochondrial reactive oxygen species in the wound healing of genetically diabetic mice. Healing of full-thickness excisional dermal wounds in diabetic C57BL/KsJ-db-/db- mice was significantly enhanced after long-term (12 weeks) administration of SkQ1. SkQ1 accelerated wound closure and stimulated epithelization, granulation tissue formation, and vascularization. On the 7th day after wounding, SkQ1 treatment increased the number of α-smooth muscle actin-positive cells (myofibroblasts), reduced the number of neutrophils, and increased macrophage infiltration. SkQ1 lowered lipid peroxidation level but did not change the level of the circulatory IL-6 and TNF. SkQ1 pretreatment also stimulated cell migration in a scratch-wound assay in vitro under hyperglycemic condition. Thus, a mitochondria-targeted antioxidant normalized both inflammatory and regenerative phases of wound healing in diabetic mice. Our results pointed to nearly all the major steps of wound healing as the target of excessive mitochondrial reactive oxygen species production in type II diabetes.


Assuntos
Derme/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Mitocôndrias/metabolismo , Plastoquinona/análogos & derivados , Cicatrização/efeitos dos fármacos , Animais , Derme/patologia , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Camundongos , Camundongos Knockout , Mitocôndrias/genética , Estresse Oxidativo/efeitos dos fármacos , Plastoquinona/farmacologia
17.
Sci Rep ; 7(1): 1394, 2017 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-28469140

RESUMO

Mitochondria-targeted antioxidants are known to alleviate mitochondrial oxidative damage that is associated with a variety of diseases. Here, we showed that SkQ1, a decyltriphenyl phosphonium cation conjugated to a quinone moiety, exhibited strong antibacterial activity towards Gram-positive Bacillus subtilis, Mycobacterium sp. and Staphylococcus aureus and Gram-negative Photobacterium phosphoreum and Rhodobacter sphaeroides in submicromolar and micromolar concentrations. SkQ1 exhibited less antibiotic activity towards Escherichia coli due to the presence of the highly effective multidrug resistance pump AcrAB-TolC. E. coli mutants lacking AcrAB-TolC showed similar SkQ1 sensitivity, as B. subtilis. Lowering of the bacterial membrane potential by SkQ1 might be involved in the mechanism of its bactericidal action. No significant cytotoxic effect on mammalian cells was observed at bacteriotoxic concentrations of SkQ1. Therefore, SkQ1 may be effective in protection of the infected mammals by killing invading bacteria.


Assuntos
Antibacterianos/farmacologia , Antioxidantes/farmacologia , Mitocôndrias/metabolismo , Plastoquinona/análogos & derivados , Bacillus subtilis/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Células HeLa , Humanos , Mycobacterium/efeitos dos fármacos , Photobacterium/efeitos dos fármacos , Plastoquinona/farmacologia , Rhodobacter sphaeroides/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos
18.
Physiol Rev ; 97(2): 699-720, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28202600

RESUMO

It has been suggested that highly social mammals, such as naked mole rats and humans, are long-lived due to neoteny (the prolongation of youth). In both species, aging cannot operate as a mechanism facilitating natural selection because the pressure of this selection is strongly reduced due to 1) a specific social structure where only the "queen" and her "husband(s)" are involved in reproduction (naked mole rats) or 2) substituting fast technological progress for slow biological evolution (humans). Lists of numerous traits of youth that do not disappear with age in naked mole rats and humans are presented and discussed. A high resistance of naked mole rats to cancer, diabetes, cardiovascular and brain diseases, and many infections explains why their mortality rate is very low and almost age-independent and why their lifespan is more than 30 years, versus 3 years in mice. In young humans, curves of mortality versus age start at extremely low values. However, in the elderly, human mortality strongly increases. High mortality rates in other primates are observed at much younger ages than in humans. The inhibition of the aging process in humans by specific drugs seems to be a promising approach to prolong our healthspan. This might be a way to retard aging, which is already partially accomplished via the natural physiological phenomenon neoteny.


Assuntos
Envelhecimento/fisiologia , Hominidae/metabolismo , Longevidade/fisiologia , Neoplasias/metabolismo , Estresse Oxidativo/fisiologia , Animais , Evolução Biológica , Humanos
19.
Aging (Albany NY) ; 9(2): 315-339, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28209927

RESUMO

MtDNA mutator mice exhibit marked features of premature aging. We find that these mice treated from age of ≈100 days with the mitochondria-targeted antioxidant SkQ1 showed a delayed appearance of traits of aging such as kyphosis, alopecia, lowering of body temperature, body weight loss, as well as ameliorated heart, kidney and liver pathologies. These effects of SkQ1 are suggested to be related to an alleviation of the effects of an enhanced reactive oxygen species (ROS) level in mtDNA mutator mice: the increased mitochondrial ROS released due to mitochondrial mutations probably interact with polyunsaturated fatty acids in cardiolipin, releasing malondialdehyde and 4-hydroxynonenal that form protein adducts and thus diminishes mitochondrial functions. SkQ1 counteracts this as it scavenges mitochondrial ROS. As the results, the normal mitochondrial ultrastructure is preserved in liver and heart; the phosphorylation capacity of skeletal muscle mitochondria as well as the thermogenic capacity of brown adipose tissue is also improved. The SkQ1-treated mice live significantly longer (335 versus 290 days). These data may be relevant in relation to treatment of mitochondrial diseases particularly and the process of aging in general.


Assuntos
Envelhecimento/efeitos dos fármacos , DNA Mitocondrial/metabolismo , Longevidade/efeitos dos fármacos , Mutação , Plastoquinona/análogos & derivados , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Marrom/metabolismo , Envelhecimento/metabolismo , Animais , Temperatura Corporal/fisiologia , Peso Corporal/fisiologia , DNA Mitocondrial/genética , Coração/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Longevidade/fisiologia , Camundongos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Miocárdio/metabolismo , Plastoquinona/farmacologia , Espécies Reativas de Oxigênio/metabolismo
20.
Biochim Biophys Acta Mol Basis Dis ; 1863(4): 968-977, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28131916

RESUMO

Mitochondrial dysfunctions occur in many diseases linked to the systemic inflammatory response syndrome (SIRS). Mild uncoupling of oxidative phosphorylation is known to rescue model animals from pathologies related to mitochondrial dysfunctions and overproduction of reactive oxygen species (ROS). To study the potential of SIRS therapy by uncoupling, we tested protonophore dinitrophenol (DNP) and a free fatty acid (FFA) anion carrier, lipophilic cation dodecyltriphenylphosphonium (C12TPP) in mice and in vitro models of SIRS. DNP and C12TPP prevented the body temperature drop and lethality in mice injected with high doses of a SIRS inducer, tumor necrosis factor (TNF). The mitochondria-targeted antioxidant plastoquinonyl decyltriphenylphosphonium (SkQ1) which also catalyzes FFA-dependent uncoupling revealed similar protective effects and downregulated expression of the NFκB-regulated genes (VCAM1, ICAM1, MCP1, and IL-6) involved in the inflammatory response of endothelium in aortas of the TNF-treated mice. In vitro mild uncoupling rescued from TNF-induced endothelial permeability, disassembly of cell contacts and VE-cadherin cleavage by the matrix metalloprotease 9 (ММР9). The uncouplers prevented TNF-induced expression of MMP9 via inhibition of NFκB signaling. Water-soluble antioxidant Trolox also prevented TNF-induced activation and permeability of endothelium in vitro via inhibition of NFκB signaling, suggesting that the protective action of the uncouplers is linked to their antioxidant potential.


Assuntos
Permeabilidade Capilar/efeitos dos fármacos , Endotélio Vascular/metabolismo , Compostos Heterocíclicos/farmacologia , Compostos Organofosforados/farmacologia , Fosforilação Oxidativa/efeitos dos fármacos , Síndrome de Resposta Inflamatória Sistêmica/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Desacopladores/farmacologia , Animais , Antioxidantes/farmacologia , Cromanos/farmacologia , Endotélio Vascular/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos , NF-kappa B/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Síndrome de Resposta Inflamatória Sistêmica/tratamento farmacológico , Síndrome de Resposta Inflamatória Sistêmica/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA