Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Dis Model Mech ; 17(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38804708

RESUMO

The TATA box-binding protein-associated factor 1 (TAF1) is a ubiquitously expressed protein and the largest subunit of the basal transcription factor TFIID, which plays a key role in initiation of RNA polymerase II-dependent transcription. TAF1 missense variants in human males cause X-linked intellectual disability, a neurodevelopmental disorder, and TAF1 is dysregulated in X-linked dystonia-parkinsonism, a neurodegenerative disorder. However, this field has lacked a genetic mouse model of TAF1 disease to explore its mechanism in mammals and treatments. Here, we generated and validated a conditional cre-lox allele and the first ubiquitous Taf1 knockout mouse. We discovered that Taf1 deletion in male mice was embryonically lethal, which may explain why no null variants have been identified in humans. In the brains of Taf1 heterozygous female mice, no differences were found in gross structure, overall expression and protein localisation, suggesting extreme skewed X inactivation towards the non-mutant chromosome. Nevertheless, these female mice exhibited a significant increase in weight, weight with age, and reduced movement, suggesting that a small subset of neurons was negatively impacted by Taf1 loss. Finally, this new mouse model may be a future platform for the development of TAF1 disease therapeutics.


Assuntos
Peso Corporal , Heterozigoto , Histona Acetiltransferases , Camundongos Knockout , Transtornos dos Movimentos , Fatores Associados à Proteína de Ligação a TATA , Fator de Transcrição TFIID , Animais , Fatores Associados à Proteína de Ligação a TATA/genética , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Fator de Transcrição TFIID/genética , Fator de Transcrição TFIID/metabolismo , Fator de Transcrição TFIID/deficiência , Feminino , Masculino , Histona Acetiltransferases/metabolismo , Histona Acetiltransferases/genética , Transtornos dos Movimentos/genética , Transtornos dos Movimentos/patologia , Embrião de Mamíferos/metabolismo , Camundongos , Encéfalo/patologia , Encéfalo/metabolismo , Genes Letais , Camundongos Endogâmicos C57BL
2.
Biochim Biophys Acta Gen Subj ; 1861(8): 1960-1969, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28506882

RESUMO

Pyruvate dehydrogenase (PDHC) and α-ketoglutarate dehydrogenase complex (KGDHC) are important sources of reactive oxygen species (ROS). In addition, it has been found that mitochondria can also serve as sinks for cellular hydrogen peroxide (H2O2). However, the ROS forming and quenching capacity of liver mitochondria has never been thoroughly examined. Here, we show that mouse liver mitochondria use catalase, glutathione (GSH), and peroxiredoxin (PRX) systems to quench ROS. Incubation of mitochondria with catalase inhibitor 3-amino-1,2,4-triazole (triazole) induced a significant increase in pyruvate or α-ketoglutarate driven O2-/H2O2 formation. 1-Choro-2,4-dinitrobenzene (CDNB), which depletes glutathione (GSH), elicited a similar effect. Auranofin (AF), a thioredoxin reductase-2 (TR2) inhibitor which disables the PRX system, did not significantly change O2-/H2O2 formation. By contrast catalase, GSH, and PRX were all required to scavenging extramitochondrial H2O2. In this study, the ROS forming potential of PDHC, KGDHC, Complex I, and Complex III was also profiled. Titration of mitochondria with 3-methyl-2-oxovaleric acid (KMV), a specific inhibitor for O2-/H2O2 production by KGDHC, induced a ~86% and ~84% decrease in ROS production during α-ketoglutarate and pyruvate oxidation. Titration of myxothiazol, a Complex III inhibitor, decreased O2-/H2O2 formation by ~45%. Rotenone also lowered ROS production in mitochondria metabolizing pyruvate or α-ketoglutarate indicating that Complex I does not contribute to ROS production during forward electron transfer from NADH. Taken together, our results indicate that KGDHC and Complex III are high capacity sites for O2-/H2O2 production in mouse liver mitochondria. We also confirm that catalase plays a role in quenching either exogenous or intramitochondrial H2O2.


Assuntos
Peróxido de Hidrogênio/metabolismo , Mitocôndrias Hepáticas/metabolismo , Superóxidos/metabolismo , Animais , Caprilatos/farmacologia , Catalase/fisiologia , Complexo III da Cadeia de Transporte de Elétrons/fisiologia , Glutationa/metabolismo , Complexo Cetoglutarato Desidrogenase/fisiologia , Masculino , Metacrilatos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Peroxirredoxinas/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Sulfetos/farmacologia , Tiazóis/farmacologia
3.
Free Radic Biol Med ; 106: 302-314, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28242228

RESUMO

Pyruvate dehydrogenase (Pdh) is a vital source of reactive oxygen species (ROS) in several different tissues. Pdh has also been suggested to serve as a mitochondrial redox sensor. Here, we report that O2•-/ H2O2 emission from pyruvate dehydrogenase (Pdh) is altered by S-glutathionylation. Glutathione disulfide (GSSG) amplified O2•-/ H2O2 production by purified Pdh during reverse electron transfer (RET) from NADH. Thiol oxidoreductase glutaredoxin-2 (Grx2) reversed these effects confirming that Pdh is a target for S-glutathionylation. S-glutathionylation had the opposite effect during forward electron transfer (FET) from pyruvate to NAD+ lowering O2•-/ H2O2 production. Immunoblotting for protein glutathione mixed disulfides (PSSG) following diamide treatment confirmed that purified Pdh can be S-glutathionylated. Similar observations were made with mouse liver mitochondria. S-glutathionylation catalysts diamide and disulfiram significantly reduced pyruvate or 2-oxoglutarate driven O2•-/ H2O2 production in liver mitochondria, results that were confirmed using various Pdh, 2-oxoglutarate dehydrogenase (Ogdh), and respiratory chain inhibitors. Immunoprecipitation of Pdh and Ogdh confirmed that either protein can be S-glutathionylated by diamide and disulfiram. Collectively, our results demonstrate that the S -glutathionylation of Pdh alters the amount of ROS formed by the enzyme complex. We also confirmed that Ogdh is controlled in a similar manner. Taken together, our results indicate that the redox sensing and ROS forming properties of Pdh and Ogdh are linked to S-glutathionylation.


Assuntos
Glutationa/metabolismo , Complexo Cetoglutarato Desidrogenase/metabolismo , Complexo Piruvato Desidrogenase/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Complexo I de Transporte de Elétrons/metabolismo , Glutarredoxinas/metabolismo , Peróxido de Hidrogênio/metabolismo , Complexo Cetoglutarato Desidrogenase/genética , Camundongos , Mitocôndrias Musculares/metabolismo , Oxirredução , Estresse Oxidativo , Complexo Piruvato Desidrogenase/genética , Superóxidos/metabolismo
4.
FEBS Lett ; 590(23): 4318-4328, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27761911

RESUMO

Here, we report that choline and dimethylglycine can stimulate reactive oxygen species (ROS) production in liver mitochondria. Choline stimulated O2 ˙- /H2 O2 formation at a concentration of 5 µm. We also observed that Complex II and III inhibitors, atpenin A5 and myxothiazol, collectively induced a 95% decrease in O2 ˙- /H2 O2 production indicating both sites serve as the main sources of ROS during choline oxidation. Dimethylglycine, an intermediate of choline oxidation, was a more effective ROS generator. Rates of production were ~ 43% higher than choline-mediated O2 ˙- /H2 O2 production. The main site for dimethylglycine-mediated ROS production was via reverse electron transfer to Complex I. Our results demonstrate that metabolism of essential metabolites involved in methionine and folic acid biosynthesis can stimulate mitochondrial ROS production.


Assuntos
Colina/farmacologia , Peróxido de Hidrogênio/metabolismo , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/metabolismo , Sarcosina/análogos & derivados , Superóxidos/metabolismo , Animais , Colina/metabolismo , Relação Dose-Resposta a Droga , Transporte de Elétrons/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Sarcosina/metabolismo , Sarcosina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA