Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Cancer Ther ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38739434

RESUMO

Insufficient quantity of functional T cells is a likely factor limiting clinical activity of T cell bispecific antibodies, especially in solid tumor indications. We hypothesized that XmAb24306 (efbalropendekin alfa), a lymphoproliferative interleukin (IL)-15/IL-15 receptor α (IL-15Rα) Fc-fusion protein, may potentiate the activity of T cell dependent (TDB) antibodies. Activation of human peripheral T cells by cevostamab, an anti-FcRH5/CD3 TDB, or anti-HER2/CD3 TDB resulted in upregulation of IL-2/15Rß (CD122) receptor subunit in nearly all CD8+ and majority of CD4+ T cells, suggesting that TDB treatment may sensitize T cells to the IL-15. XmAb24306 enhanced T cell bispecific antibody induced CD8+ and CD4+ T cell proliferation and expansion. In vitro combination of XmAb24306 with cevostamab or anti-HER2/CD3 TDB resulted in significant enhancement of tumor cell killing, which was reversed when T cell numbers were normalized, suggesting that T cell expansion is the main mechanism for the observed benefit. Pre-treatment of immune competent mice with a mouse-reactive surrogate of XmAb24306 (mIL-15-Fc) resulted in significant increase of T cells in blood, spleen and in tumors and converted transient anti-HER2/CD3 TDB responses to complete durable responses. In summary, our results support the hypothesis where the number of tumor infiltrating T cells is rate limiting for the activity of solid tumor targeting TDBs. Upregulation of CD122 by TDB treatment and the observed synergy with XmAb24306 and T cell bispecific antibodies supports clinical evaluation of this novel immunotherapy combination.

2.
Mol Cancer Ther ; 22(5): 659-666, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-36822576

RESUMO

Although CD3-bispecific antibodies have shown promising activity in the treatment of hematological cancers, insufficient T-cell costimulation may limit long-term responses. Immunomodulatory drugs (IMiDs), routinely used in treating multiple myeloma, possess pleiotropic antimyeloma properties and have been described to enhance T-cell responses similar to costimulatory signaling and may therefore have synergistic effects when combined with T-cell bispecifics. In this report, we demonstrate that IMiDs substantially enhance tumor cell killing induced by CD3 bispecifics and increase CD8+ T-cell proliferation and expansion. We further show that the beneficial effects of IMiDs on T-cell function and expansion are mediated by enhanced IL2 production by CD4+ T cells. Our studies provide mechanistic insight into the costimulatory properties of IMiDs and support combination treatments with T-cell agonist therapies in a broad spectrum of indications.


Assuntos
Anticorpos Biespecíficos , Humanos , Anticorpos Biespecíficos/farmacologia , Agentes de Imunomodulação , Interleucina-2/farmacologia , Complexo CD3 , Linfócitos T CD8-Positivos
3.
Mol Cancer Ther ; 20(4): 716-725, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33536191

RESUMO

Ovarian cancer is a diverse class of tumors with very few effective treatment options and suboptimal response rates in early clinical studies using immunotherapies. Here we describe LY6/PLAUR domain containing 1 (LYPD1) as a novel target for therapeutic antibodies for the treatment of ovarian cancer. LYPD1 is broadly expressed in both primary and metastatic ovarian cancer with ∼70% prevalence in the serous cancer subset. Bispecific antibodies targeting CD3 on T cells and a tumor antigen on cancer cells have demonstrated significant clinical activity in hematologic cancers. We have developed an anti-LYPD1/CD3 T-cell-dependent bispecific antibody (TDB) to redirect T-cell responses to LYPD1 expressing ovarian cancer. Here we characterize the nonclinical pharmacology of anti-LYPD1/CD3 TDB and show induction of a robust polyclonal T-cell activation and target dependent killing of LYPD1 expressing ovarian cancer cells resulting in efficient in vivo antitumor responses in PBMC reconstituted immune-deficient mice and human CD3 transgenic mouse models. Anti-LYPD1/CD3 TDB is generally well tolerated at high-dose levels in mice, a pharmacologically relevant species, and showed no evidence of toxicity or damage to LYPD1 expressing tissues.


Assuntos
Anticorpos Biespecíficos/uso terapêutico , Complexo CD3/imunologia , Neoplasias Ovarianas/tratamento farmacológico , Sequência de Aminoácidos , Animais , Anticorpos Biespecíficos/farmacologia , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos Transgênicos , Neoplasias Ovarianas/patologia
4.
JCI Insight ; 5(7)2020 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-32271166

RESUMO

Systemic cytokine release and on-target/off-tumor toxicity to normal tissues are the main adverse effects limiting the clinical utility of T cell-redirecting therapies. This study was designed to determine how binding affinity for CD3 and tumor target HER2 impact the efficacy and nonclinical safety of anti-HER2/CD3 T cell-dependent antibodies (TDBs). Affinity was found to be a major determinant for the overall tolerability. Higher affinity for CD3 associated with rapidly elevated peripheral cytokine concentrations, weight loss in mice, and poor tolerability in cynomolgus monkeys. A TDB with lower CD3 affinity was better tolerated in cynomolgus monkeys compared with a higher CD3-affinity TDB. In contrast to tolerability, T cell binding affinity had only limited impact on in vitro and in vivo antitumor activity. High affinity for HER2 was critical for the tumor-killing activity of anti-HER2/CD3 TDBs, but higher HER2 affinity also associated with a more severe toxicity profile, including cytokine release and damage to HER2-expressing tissues. The tolerability of the anti-HER2/CD3 was improved by implementing a dose-fractionation strategy. Fine-tuning the affinities for both the tumor target and CD3 is likely a valuable strategy for achieving maximal therapeutic index of CD3 bispecific antibodies.


Assuntos
Anticorpos Biespecíficos/imunologia , Afinidade de Anticorpos , Antineoplásicos Imunológicos/imunologia , Receptor ErbB-2/imunologia , Animais , Anticorpos Biespecíficos/química , Antineoplásicos Imunológicos/química , Complexo CD3/química , Células CHO , Cricetulus , Avaliação Pré-Clínica de Medicamentos , Humanos , Macaca fascicularis , Receptor ErbB-2/química
5.
Sci Transl Med ; 11(508)2019 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-31484792

RESUMO

T cell-retargeting therapies have transformed the therapeutic landscape of oncology. Regardless of the modality, T cell activating therapies are commonly accompanied by systemic cytokine release, which can progress to deadly cytokine release syndrome (CRS). Because of incomplete mechanistic understanding of the relationship between T cell activation and systemic cytokine release, optimal toxicity management that retains full therapeutic potential remains unclear. Here, we report the cell type-specific cellular mechanisms that link CD3 bispecific antibody-mediated killing to toxic cytokine release. The immunologic cascade is initiated by T cell triggering, whereas monocytes and macrophages are the primary source of systemic toxic cytokine release. We demonstrate that T cell-generated tumor necrosis factor-α (TNF-α) is the primary mechanism mediating monocyte activation and systemic cytokine release after CD3 bispecific treatment. Prevention of TNF-α release is sufficient to impair systemic release of monocyte cytokines without affecting antitumor efficacy. Systemic cytokine release is only observed upon initial exposure to CD3 bispecific antibody not subsequent doses, indicating a biological distinction between doses. Despite impaired cytokine release after second exposure, T cell cytotoxicity remained unaffected, demonstrating that cytolytic activity of T cells can be achieved in the absence of cytokine release. The mechanistic uncoupling of toxic cytokines and T cell cytolytic activity in the context of CD3 bispecifics provides a biological rationale to clinically explore preventative treatment approaches to mitigate toxicity.


Assuntos
Anticorpos Biespecíficos/imunologia , Complexo CD3/imunologia , Citocinas/metabolismo , Citotoxicidade Imunológica , Linfócitos T Citotóxicos/imunologia , Animais , Humanos , Macrófagos/metabolismo , Camundongos Transgênicos , Monócitos/metabolismo , Receptor ErbB-2/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
6.
J Med Chem ; 62(4): 2140-2153, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30715878

RESUMO

Pim kinases have been targets of interest for a number of therapeutic areas. Evidence of durable single-agent efficacy in human clinical trials validated Pim kinase inhibition as a promising therapeutic approach for multiple myeloma patients. Here, we report the compound optimization leading to GDC-0339 (16), a potent, orally bioavailable, and well tolerated pan-Pim kinase inhibitor that proved efficacious in RPMI8226 and MM.1S human multiple myeloma xenograft mouse models and has been evaluated as an early development candidate.


Assuntos
Antineoplásicos/uso terapêutico , Mieloma Múltiplo/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-pim-1/antagonistas & inibidores , Pirazóis/uso terapêutico , Animais , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Linhagem Celular Tumoral , Cães , Feminino , Humanos , Macaca fascicularis , Células Madin Darby de Rim Canino , Masculino , Camundongos SCID , Estrutura Molecular , Ligação Proteica , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/metabolismo , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Pirazóis/síntese química , Pirazóis/metabolismo , Ratos Sprague-Dawley , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Sci Transl Med ; 10(463)2018 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-30333240

RESUMO

A primary barrier to the success of T cell-recruiting bispecific antibodies in the treatment of solid tumors is the lack of tumor-specific targets, resulting in on-target off-tumor adverse effects from T cell autoreactivity to target-expressing organs. To overcome this, we developed an anti-HER2/CD3 T cell-dependent bispecific (TDB) antibody that selectively targets HER2-overexpressing tumor cells with high potency, while sparing cells that express low amounts of HER2 found in normal human tissues. Selectivity is based on the avidity of two low-affinity anti-HER2 Fab arms to high target density on HER2-overexpressing cells. The increased selectivity to HER2-overexpressing cells is expected to mitigate the risk of adverse effects and increase the therapeutic index. Results included in this manuscript not only support the clinical development of anti-HER2/CD3 1Fab-immunoglobulin G TDB but also introduce a potentially widely applicable strategy for other T cell-directed therapies. The potential of this discovery has broad applications to further enable consideration of solid tumor targets that were previously limited by on-target, but off-tumor, autoimmunity.


Assuntos
Afinidade de Anticorpos/imunologia , Complexo CD3/imunologia , Citotoxicidade Imunológica , Receptor ErbB-2/imunologia , Anticorpos Biespecíficos/imunologia , Linhagem Celular Tumoral , Humanos , Fragmentos Fab das Imunoglobulinas/metabolismo , Imunoglobulina G/metabolismo , Ativação Linfocitária/imunologia , Ligação Proteica
8.
Mol Cancer Ther ; 17(4): 776-785, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29339550

RESUMO

Anti-HER2/CD3, a T-cell-dependent bispecific antibody (TDB) construct, induces T-cell-mediated cell death in cancer cells expressing HER2 by cross-linking tumor HER2 with CD3 on cytotoxic T cells, thereby creating a functional cytolytic synapse. TDB design is a very challenging process that requires consideration of multiple parameters. Although therapeutic antibody design strategy is commonly driven by striving for the highest attainable antigen-binding affinity, little is known about how the affinity of each TDB arm can affect the targeting ability of the other arm and the consequent distribution and efficacy. To our knowledge, no distribution studies have been published using preclinical models wherein the T-cell-targeting arm of the TDB is actively bound to T cells. We used a combined approach involving radiochemistry, invasive biodistribution, and noninvasive single-photon emission tomographic (SPECT) imaging to measure TDB distribution and catabolism in transgenic mice with human CD3ε expression on T cells. Using CD3 affinity variants, we assessed the impact of CD3 affinity on short-term pharmacokinetics, tissue distribution, and cellular uptake. Our experimental approach determined the relative effects of (i) CD3 targeting to normal tissues, (ii) HER2 targeting to HER2-expressing tumors, and (iii) relative HER2/CD3 affinity, all as critical drivers for TDB distribution. We observed a strong correlation between CD3 affinity and distribution to T-cell-rich tissues, with higher CD3 affinity reducing systemic exposure and shifting TDB distribution away from tumor to T-cell-containing tissues. These observations have important implications for clinical translation of bispecific antibodies for cancer immunotherapy. Mol Cancer Ther; 17(4); 776-85. ©2018 AACR.


Assuntos
Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/farmacocinética , Complexo CD3/imunologia , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Receptor ErbB-2/imunologia , Linfócitos T Citotóxicos/imunologia , Animais , Afinidade de Anticorpos , Neoplasias do Colo/patologia , Modelos Animais de Doenças , Feminino , Humanos , Imunoterapia , Camundongos , Camundongos Nus , Camundongos Transgênicos , Linfócitos T Citotóxicos/efeitos dos fármacos , Linfócitos T Citotóxicos/patologia , Distribuição Tecidual , Células Tumorais Cultivadas
9.
J Med Chem ; 60(10): 4458-4473, 2017 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-28445037

RESUMO

Pim kinases have been identified as promising therapeutic targets for hematologic-oncology indications, including multiple myeloma and certain leukemia. Here, we describe our continued efforts in optimizing a lead series by improving bioavailability while maintaining high inhibitory potency against all three Pim kinase isoforms. The discovery of extensive intestinal metabolism and major metabolites helped refine our design strategy, and we observed that optimizing the pharmacokinetic properties first and potency second was a more successful approach than the reverse. In the resulting work, novel analogs such as 20 (GNE-955) were discovered bearing 5-azaindazole core with noncanonical hydrogen bonding to the hinge.


Assuntos
Indazóis/química , Indazóis/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-pim-1/antagonistas & inibidores , Animais , Disponibilidade Biológica , Cristalografia por Raios X , Humanos , Indazóis/metabolismo , Indazóis/farmacocinética , Mucosa Intestinal/metabolismo , Simulação de Acoplamento Molecular , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/metabolismo , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacocinética , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Ratos
10.
Cancer Cell ; 31(3): 383-395, 2017 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-28262555

RESUMO

The anti-FcRH5/CD3 T cell-dependent bispecific antibody (TDB) targets the B cell lineage marker FcRH5 expressed in multiple myeloma (MM) tumor cells. We demonstrate that TDBs trigger T cell receptor activation by inducing target clustering and exclusion of CD45 phosphatase from the synapse. The dimensions of the target molecule play a key role in the efficiency of the synapse formation. The anti-FcRH5/CD3 TDB kills human plasma cells and patient-derived myeloma cells at picomolar concentrations and results in complete depletion of B cells and bone marrow plasma cells in cynomolgus monkeys. These data demonstrate the potential for the anti-FcRH5/CD3 TDB, alone or in combination with inhibition of PD-1/PD-L1 signaling, in the treatment of MM and other B cell malignancies.


Assuntos
Anticorpos Biespecíficos/uso terapêutico , Complexo CD3/imunologia , Epitopos , Sinapses Imunológicas/fisiologia , Mieloma Múltiplo/tratamento farmacológico , Receptores Fc/imunologia , Linfócitos T/imunologia , Animais , Citocinas/metabolismo , Humanos , Antígenos Comuns de Leucócito/fisiologia , Ativação Linfocitária , Macaca fascicularis , Camundongos , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/patologia , Receptor de Morte Celular Programada 1/fisiologia , Receptores de Antígenos de Linfócitos T/fisiologia , Receptores Fc/análise
11.
MAbs ; 9(2): 213-230, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27929752

RESUMO

Bispecific IgG production in single host cells has been a much sought-after goal to support the clinical development of these complex molecules. Current routes to single cell production of bispecific IgG include engineering heavy chains for heterodimerization and redesign of Fab arms for selective pairing of cognate heavy and light chains. Here, we describe novel designs to facilitate selective Fab arm assembly in conjunction with previously described knobs-into-holes mutations for preferential heavy chain heterodimerization. The top Fab designs for selective pairing, namely variants v10 and v11, support near quantitative assembly of bispecific IgG in single cells for multiple different antibody pairs as judged by high-resolution mass spectrometry. Single-cell and in vitro-assembled bispecific IgG have comparable physical, in vitro biological and in vivo pharmacokinetics properties. Efficient single-cell production of bispecific IgG was demonstrated for human IgG1, IgG2 and IgG4 thereby allowing the heavy chain isotype to be tailored for specific therapeutic applications. Additionally, a reverse chimeric bispecific IgG2a with humanized variable domains and mouse constant domains was generated for preclinical proof-of-concept studies in mice. Efficient production of a bispecific IgG in stably transfected mammalian (CHO) cells was shown. Individual clones with stable titer and bispecific IgG composition for >120 days were readily identified. Such long-term cell line stability is needed for commercial manufacture of bispecific IgG. The single-cell bispecific IgG designs developed here may be broadly applicable to biotechnology research, including screening bispecific IgG panels, and to support clinical development.


Assuntos
Anticorpos Biespecíficos/biossíntese , Engenharia de Proteínas/métodos , Animais , Humanos , Imunoglobulina G
12.
Mol Cancer Ther ; 11(10): 2222-32, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22807577

RESUMO

Fc receptor-like 5 (FcRL5/FcRH5/IRTA2/CD307) is a surface protein expressed selectively on B cells and plasma cells. We found that FcRL5 was expressed at elevated levels on the surface of plasma cells from the bone marrow of patients diagnosed with multiple myeloma. This prevalence in multiple myeloma and narrow pattern of normal expression indicate that FcRL5 could be a target for antibody-based therapies for multiple myeloma, particularly antibody-drug conjugates (ADC), potent cytotoxic drugs linked to antibodies via specialized chemical linkers, where limited expression on normal tissues is a key component to their safety. We found that FcRL5 is internalized upon antibody binding, indicating that ADCs to FcRL5 could be effective. Indeed, we found that FcRL5 ADCs were efficacious in vitro and in vivo but the unconjugated antibody was not. The two most effective consisted of our anti-FcRL5 antibody conjugated through cysteines to monomethylauristatin E (MMAE) by a maleimidocaproyl-valine-citrulline-p-aminobenzyloxycarbonyl (MC-vcPAB) linker (anti-FcRL5-MC-vcPAB-MMAE) or conjugated via lysines to the maytansinoid DM4 through a disulfide linker (anti-FcRL5-SPDB-DM4). These two ADCs were highly effective in vivo in combination with bortezomib or lenalidomide, drugs in use for the treatment of multiple myeloma. These data show that the FcRL5 ADCs described herein show promise as an effective treatment for multiple myeloma.


Assuntos
Anticorpos Antineoplásicos/imunologia , Antineoplásicos/uso terapêutico , Imunoconjugados/uso terapêutico , Terapia de Alvo Molecular , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/imunologia , Receptores de Superfície Celular/imunologia , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Endocitose/efeitos dos fármacos , Humanos , Imunoconjugados/química , Imunoconjugados/farmacologia , Camundongos , Camundongos SCID , Receptores Fc , Reprodutibilidade dos Testes , Resultado do Tratamento
13.
Blood ; 110(2): 616-23, 2007 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-17374736

RESUMO

Targeting cytotoxic drugs to cancer cells using antibody-drug conjugates (ADCs), particularly those with stable linkers between the drug and the antibody, could be an effective cancer treatment with low toxicity. However, for stable-linker ADCs to be effective, they must be internalized and degraded, limiting potential targets to surface antigens that are trafficked to lysosomes. CD79a and CD79b comprise the hetrodimeric signaling component of the B-cell receptor, and are attractive targets for the use of ADCs because they are B-cell-specific, expressed in non-Hodgkin lymphomas (NHL), and are trafficked to a lysosomal-like compartment as part of antigen presentation. We show here that the stable-linker ADCs anti-CD79b-MCC-DM1 and anti-CD79b-MC-MMAF are capable of target-dependent killing of nonHodgkin lymphoma cell lines in vitro. Further, these 2 ADCs are equally effective as low doses in xenograft models of follicular, mantle cell, and Burkitt lymphomas, even though several of these cell lines express relatively low levels of CD79b in vivo. In addition, we demonstrate that anti-CD79b ADCs were more effective than anti-CD79a ADCs and that, as hypothesized, anti-CD79b antibodies downregulated surface B-cell receptor and were trafficked to the lysosomal-like major histocompatibility complex class II-positive compartment MIIC. These results suggest that anti-CD79b-MCC-DM1 and anti-CD79b-MC-MMAF are promising therapeutics for the treatment of NHL.


Assuntos
Anticorpos/uso terapêutico , Antígenos CD79/imunologia , Imunoconjugados/uso terapêutico , Linfoma não Hodgkin/imunologia , Animais , Células CHO , Linhagem Celular Tumoral , Cricetinae , Cricetulus , Feminino , Citometria de Fluxo , Antígenos HLA-D/imunologia , Humanos , Lisossomos/imunologia , Camundongos , Camundongos SCID , Receptores de Antígenos de Linfócitos B/imunologia , Transplante Heterólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA