Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Rice (N Y) ; 17(1): 25, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592643

RESUMO

BACKGROUND: Development of transgenic rice overexpressing transcription factors involved in drought response has been previously reported to confer drought tolerance and therefore represents a means of crop improvement. We transformed lowland rice IR64 with OsTZF5, encoding a CCCH-tandem zinc finger protein, under the control of the rice LIP9 stress-inducible promoter and compared the drought response of transgenic lines and nulls to IR64 in successive screenhouse paddy and field trials up to the T6 generation. RESULTS: Compared to the well-watered conditions, the level of drought stress across experiments varied from a minimum of - 25 to - 75 kPa at a soil depth of 30 cm which reduced biomass by 30-55% and grain yield by 1-92%, presenting a range of drought severities. OsTZF5 transgenic lines showed high yield advantage under drought over IR64 in early generations, which was related to shorter time to flowering, lower shoot biomass and higher harvest index. However, the increases in values for yield and related traits in the transgenics became smaller over successive generations despite continued detection of drought-induced transgene expression as conferred by the LIP9 promoter. The decreased advantage of the transgenics over generations tended to coincide with increased levels of homozygosity. Background cleaning of the transgenic lines as well as introgression of the transgene into an IR64 line containing major-effect drought yield QTLs, which were evaluated starting at the BC3F1 and BC2F3 generation, respectively, did not result in consistently increased yield under drought as compared to the respective checks. CONCLUSIONS: Although we cannot conclusively explain the genetic factors behind the loss of yield advantage of the transgenics under drought across generations, our results help in distinguishing among potential drought tolerance mechanisms related to effectiveness of the transgenics, since early flowering and harvest index most closely reflected the levels of yield advantage in the transgenics across generations while reduced biomass did not.

2.
Front Plant Sci ; 15: 1344383, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38390302

RESUMO

Water stress brought about by climate change is among the major global concerns threatening food security. Rice is an important staple food which requires high water resources. Being a semi-aquatic plant, rice is particularly susceptible to drought. The aim of this work was to develop techniques directed to promote rice resilience to water deprivation stress during germination by implementing specific seed priming treatments. Five popular Italian rice varieties were subjected to priming treatments using novel, sustainable solutions, like poly-gamma-glutamic acid (γ-PGA), denatured γ-PGA (dPGA), and iron (Fe) pulsing, alone or in combination. The effect of the developed priming methods was tested under optimal conditions as well as under water deprivation stress imposed by polyethylene glycol (PEG) treatments. The priming efficacy was phenotypically determined in terms of germination behavior by measuring a series of parameters (germinability, germination index, mean germination time, seed vigor index, root and shoot length, germination stress tolerance index). Biochemical analyses were carried out to measure the levels of iron uptake and accumulation of reactive oxygen species (ROS). Integrative data analyses revealed that the rice varieties exhibited a strong genotype- and treatment-specific germination behavior. PEG strongly inhibited germination while most of the priming treatments were able to rescue it in all varieties tested except for Unico, which can be defined as highly stress sensitive. Molecular events (DNA repair, antioxidant response, iron homeostasis) associated with the transition from seed to seedling were monitored in terms of changes in gene expression profiles in two varieties sensitive to water deprivation stress with different responses to priming. The investigated genes appeared to be differentially expressed in a genotype-, priming treatment-, stress- and stage-dependent manner. The proposed seed priming treatments can be envisioned as sustainable and versatile agricultural practices that could help in addressing the impact of climate challenges on the agri-food system.

4.
Sci Rep ; 13(1): 676, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36635301

RESUMO

Micronutrient deficiencies such as iron (Fe), zinc (Zn), and vitamin A, constitute a severe global public health phenomenon. Over half of preschool children and two-thirds of nonpregnant women of reproductive age worldwide have micronutrient deficiencies. Biofortification is a cost-effective strategy that comprises a meaningful and sustainable means of addressing this issue by delivering micronutrients through staple foods to populations with limited access to diverse diets and other nutritional interventions. Here, we report on the proof-of-concept and early development stage of a collection of biofortified rice events with a high density of Fe and Zn in polished grains that have been pursued further to advance development for product release. In total, eight constructs were developed specifically expressing dicot ferritins and the rice nicotianamine synthase 2 (OsNAS2) gene under different combinations of promoters. A large-scale transformation of these constructs to Bangladesh and Philippines commercial indica cultivars and subsequent molecular screening and confined field evaluations resulted in the identification of a pool of ten events with Fe and Zn concentrations in polished grains of up to 11 µg g-1 and up to 37 µg g-1, respectively. The latter has the potential to reduce the prevalence of inadequate Zn intake for women of childbearing age in Bangladesh and in the Philippines by 30% and 50%, respectively, compared to the current prevalence. To our knowledge, this is the first potential biotechnology public-sector product that adopts the product cycle phase-gated approach, routinely applied in the private sector.


Assuntos
Oryza , Ferritinas/genética , Ferro/metabolismo , Micronutrientes , Compostos Orgânicos , Oryza/química , Zinco/metabolismo , Plantas Geneticamente Modificadas
5.
Front Genome Ed ; 5: 1308228, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38322756

RESUMO

Developing nutritious rice with a higher yield is one approach to alleviating the problem of micronutrient deficiency in developing countries, especially human malnutrition involving zinc and iron (Fe) deficiency, and achieving better adoption. The transport of micronutrients such as Fe and Zn is mainly regulated via the nicotianamine synthase (OsNAS) gene family, whereas yield is a complex trait that involves multiple loci. Genome editing via CRISPR (clustered regularly interspaced short palindromic repeat)-Cas9, focusing on the OsNAS2 promoter, particularly the deletion of the cis-regulatory element ARR1AT at position -933, was conducted for an enhanced accumulation of Zn in the grain and per plant. The results showed that our promoter editing increased Zn concentration per plant. Evidence also showed that an improved spikelet number per main panicle led to increased grain per plant. The traits were inherited in "transgene-free" and homozygous plant progenies. Further investigation needs to be conducted to validate trait performance under field conditions and elucidate the cause of the spikelet increase.

7.
Genes (Basel) ; 12(12)2021 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-34946962

RESUMO

Hidden hunger, or micronutrient deficiency, is a worldwide problem. Several approaches are employed to alleviate its effects (e.g., promoting diet diversity, use of dietary supplements, chemical fortification of processed food), and among these, biofortification is considered as one of the most cost-effective and highly sustainable. Rice is one of the best targets for biofortification since it is a staple food for almost half of the world's population as a high-energy source but with low nutritional value. Multiple biofortified rice lines have been produced during the past decades, while few studies also reported modifications in germination behavior (in terms of enhanced or decreased germination percentage or speed). It is important to underline that rapid, uniform germination, and seedling establishment are essential prerequisites for crop productivity. Combining the two traits, biofortified, highly-nutritious seeds with improved germination behavior can be envisaged as a highly-desired target for rice breeding. To this purpose, information gathered from transcriptomics studies can reveal useful insights to unveil the molecular players governing both traits. The present review aims to provide an overview of transcriptomics studies applied at the crossroad between biofortification and seed germination, pointing out potential candidates for trait pyramiding.


Assuntos
Biofortificação/métodos , Perfilação da Expressão Gênica/métodos , Oryza/crescimento & desenvolvimento , Locos de Características Quantitativas , Regulação da Expressão Gênica de Plantas , Germinação , Oryza/genética , Melhoramento Vegetal , Proteínas de Plantas/genética
8.
Transgenic Res ; 30(4): 461-498, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34263445

RESUMO

Genome-editing technologies offer unprecedented opportunities for crop improvement with superior precision and speed. This review presents an analysis of the current state of genome editing in the major cereal crops- rice, maize, wheat and barley. Genome editing has been used to achieve important agronomic and quality traits in cereals. These include adaptive traits to mitigate the effects of climate change, tolerance to biotic stresses, higher yields, more optimal plant architecture, improved grain quality and nutritional content, and safer products. Not all traits can be achieved through genome editing, and several technical and regulatory challenges need to be overcome for the technology to realize its full potential. Genome editing, however, has already revolutionized cereal crop improvement and is poised to shape future agricultural practices in conjunction with other breeding innovations.


Assuntos
Sistemas CRISPR-Cas , Produtos Agrícolas/genética , Grão Comestível/genética , Edição de Genes , Genoma de Planta , Melhoramento Vegetal/métodos , Plantas Geneticamente Modificadas/genética , Marcação de Genes
10.
Transgenic Res ; 30(4): 551-584, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33970411

RESUMO

Genome editing in agriculture and food is leading to new, improved crops and other products. Depending on the regulatory approach taken in each country or region, commercialization of these crops and products may or may not require approval from the respective regulatory authorities. This paper describes the regulatory landscape governing genome edited agriculture and food products in a selection of countries and regions.


Assuntos
Biotecnologia/legislação & jurisprudência , Produtos Agrícolas/genética , Alimentos Geneticamente Modificados/normas , Edição de Genes , Genoma de Planta , Regulamentação Governamental , Plantas Geneticamente Modificadas/genética , Saúde Global , Humanos
11.
Transgenic Res ; 30(4): 321-335, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33728594

RESUMO

Genome editing holds the potential for rapid crop improvement to meet the challenge of feeding the planet in a changing climate. The delivery of gene editing reagents into the plant cells has been dominated by plasmid vectors delivered using agrobacterium or particle bombardment. This approach involves the production of genetically engineered plants, which need to undergo regulatory approvals. There are various reagent delivery approaches available that have enabled the delivery of DNA-free editing reagents. They invariably involve the use of ribonucleoproteins (RNPs), especially in the case of CRISPR/Cas9-mediated gene editing. The explant of choice for most of the non-DNA approaches utilizes protoplasts as the recipient explant. While the editing efficiency is high in protoplasts, the ability to regenerate individual plants from edited protoplasts remains a challenge. There are various innovative delivery approaches being utilized to perform in planta edits that can be incorporated in the germline cells or inherited via seed. With the modification and adoption of various novel approaches currently being used in animal systems, it seems likely that non-transgenic genome editing will become routine in higher plants.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Vetores Genéticos/administração & dosagem , Genoma de Planta , Plantas Geneticamente Modificadas/genética , Plantas/genética , Ribonucleoproteínas/metabolismo , Agrobacterium , Protoplastos , Ribonucleoproteínas/genética
12.
Nat Commun ; 11(1): 5203, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33060603

RESUMO

Ending all forms of hunger by 2030, as set forward in the UN-Sustainable Development Goal 2 (UN-SDG2), is a daunting but essential task, given the limited timeline ahead and the negative global health and socio-economic impact of hunger. Malnutrition or hidden hunger due to micronutrient deficiencies affects about one third of the world population and severely jeopardizes economic development. Staple crop biofortification through gene stacking, using a rational combination of conventional breeding and metabolic engineering strategies, should enable a leap forward within the coming decade. A number of specific actions and policy interventions are proposed to reach this goal.


Assuntos
Biofortificação/métodos , Engenharia Metabólica/métodos , Cruzamento , Produtos Agrícolas/genética , Países em Desenvolvimento , Abastecimento de Alimentos , Alimentos Fortificados , Saúde Global , Humanos , Desnutrição/prevenção & controle , Micronutrientes , Minerais , Oryza , Plantas/genética , Plantas Geneticamente Modificadas , Formulação de Políticas , Provitaminas , Desenvolvimento Sustentável/economia , Desenvolvimento Sustentável/tendências , Nações Unidas , Vitaminas
13.
Sci Rep ; 10(1): 1376, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31992721

RESUMO

Part of the studies involved in safety assessment of genetically engineered crops includes characterizing the organization, integrity, and stability of the inserted DNA and evaluating the potential allergenicity and toxicity of newly-expressed proteins. Molecular characterization of the introduced DNA in provitamin A biofortified rice event GR2E confirmed insertion of a single copy of the transfer-DNA in the genome and its inheritance as a single locus. Nucleotide sequencing of the inserted DNA confirmed it was introduced without modifications. The phytoene synthase, and carotene desaturase proteins did not display sequence similarity with allergens or toxins. Both proteins were rapidly digested in simulated gastric fluid and their enzymatic activity was inhibited upon heat treatment. Acute oral toxicity testing of the protein in mice demonstrated lack of adverse effects. These evidences substantiated the lack of any identifiable hazards for both proteins and in combination with other existing comparative analyses provided assurance that food derived from this rice is safe. This conclusion is in line with those of the regulatory agencies of US Food and Drug Administration, Health Canada and Food Standard Australia and New Zealand.


Assuntos
Biofortificação , Inocuidade dos Alimentos , Alimentos Fortificados/análise , Alimentos Geneticamente Modificados , Oryza/genética , Provitaminas , Vitamina A , Animais , Genoma de Planta , Geranil-Geranildifosfato Geranil-Geraniltransferase , Camundongos , Provitaminas/análise , Provitaminas/genética , Vitamina A/análise , Vitamina A/genética
14.
Bio Protoc ; 10(17): e3739, 2020 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-33659399

RESUMO

Genetic transformation is crucial for both investigating gene functions and for engineering of crops to introduce new traits. Rice (Oryza sativa L.) is an important model in plant research, since it is the staple food for more than half of the world's population. As a result, numerous transformation methods have been developed for both indica and japonica rice. Since breeders continuously develop new rice varieties, transformation protocols have to be adapted for each new variety. Here we provide an optimized transformation protocol with detailed tips and tricks for a new African variety Komboka using immature embryos. In Komboka, we obtained an apparent transformation rate of up to 48% for GUS/GFP reporter gene constructs using this optimized protocol. This protocol is also applicable for use with other elite indica rice varieties.

15.
Nat Biotechnol ; 37(11): 1344-1350, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31659337

RESUMO

Bacterial blight of rice is an important disease in Asia and Africa. The pathogen, Xanthomonas oryzae pv. oryzae (Xoo), secretes one or more of six known transcription-activator-like effectors (TALes) that bind specific promoter sequences and induce, at minimum, one of the three host sucrose transporter genes SWEET11, SWEET13 and SWEET14, the expression of which is required for disease susceptibility. We used CRISPR-Cas9-mediated genome editing to introduce mutations in all three SWEET gene promoters. Editing was further informed by sequence analyses of TALe genes in 63 Xoo strains, which revealed multiple TALe variants for SWEET13 alleles. Mutations were also created in SWEET14, which is also targeted by two TALes from an African Xoo lineage. A total of five promoter mutations were simultaneously introduced into the rice line Kitaake and the elite mega varieties IR64 and Ciherang-Sub1. Paddy trials showed that genome-edited SWEET promoters endow rice lines with robust, broad-spectrum resistance.


Assuntos
Resistência à Doença , Proteínas de Membrana Transportadoras/genética , Oryza/crescimento & desenvolvimento , Efetores Semelhantes a Ativadores de Transcrição/genética , Xanthomonas/patogenicidade , Proteínas de Bactérias/genética , Sistemas CRISPR-Cas , Edição de Genes , Regulação da Expressão Gênica de Plantas , Mutação , Oryza/genética , Oryza/microbiologia , Proteínas de Plantas/genética , Regiões Promotoras Genéticas , Análise de Sequência de DNA , Xanthomonas/genética
16.
Front Plant Sci ; 10: 833, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31379889

RESUMO

The micronutrient iron (Fe) is not only essential for plant survival and proliferation but also crucial for healthy human growth and development. Rice and wheat are the two leading staples globally; unfortunately, popular rice and wheat cultivars only have a minuscule amount of Fe content and mainly present in the outer bran layers. Unavailability of considerable Fe-rich rice and wheat germplasms limits the potential of conventional breeding to develop this micronutrient trait in both staples. Agronomic biofortification, defined as soil and foliar fertilizer application, has potential but remains quite challenging to improve grain Fe to the significant level. In contrast, recent accomplishments in genetic biofortification can help to develop Fe-enriched cereal grains to sustainably address the problem of "hidden hunger" when the roadmap from proof of concept to product and adoption can be achieved. Here, we highlight the different genetic biofortification strategies for rice and wheat and path to develop a product.

17.
Plant Biotechnol J ; 16(11): 1918-1927, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29604159

RESUMO

Rice tungro disease (RTD) is a serious constraint in rice production across tropical Asia. RTD is caused by the interaction between Rice tungro spherical virus (RTSV) and Rice tungro bacilliform virus. RTSV resistance found in traditional cultivars has contributed to a reduction in the incidence of RTD in the field. Natural RTSV resistance is a recessive trait controlled by the translation initiation factor 4 gamma gene (eIF4G). The Y1059 V1060 V1061 residues of eIF4G are known to be associated with the reactions to RTSV. To develop new sources of resistance to RTD, mutations in eIF4G were generated using the CRISPR/Cas9 system in the RTSV-susceptible variety IR64, widely grown across tropical Asia. The mutation rates ranged from 36.0% to 86.6%, depending on the target site, and the mutations were successfully transmitted to the next generations. Among various mutated eIF4G alleles examined, only those resulting in in-frame mutations in SVLFPNLAGKS residues (mainly NL), adjacent to the YVV residues, conferred resistance. Furthermore, our data suggest that eIF4G is essential for normal development, as alleles resulting in truncated eIF4G could not be maintained in homozygous state. The final products with RTSV resistance and enhanced yield under glasshouse conditions were found to no longer contain the Cas9 sequence. Hence, the RTSV-resistant plants with the novel eIF4G alleles represent a valuable material to develop more diverse RTSV-resistant varieties.


Assuntos
Proteína 9 Associada à CRISPR , Sistemas CRISPR-Cas , Resistência à Doença/genética , Fator de Iniciação Eucariótico 4G/genética , Edição de Genes/métodos , Oryza/genética , Doenças das Plantas/virologia , Tungrovirus , Alelos , Fator de Iniciação Eucariótico 4G/fisiologia , Genes de Plantas/genética , Genes de Plantas/fisiologia , Oryza/virologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/virologia
18.
Rice (N Y) ; 9(1): 49, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27671163

RESUMO

Zinc (Zn) is one of the most essential micronutrients required for the growth and development of human beings. More than one billion people, particularly children and pregnant women suffer from Zn deficiency related health problems in Asia. Rice is the major staple food for Asians, but the presently grown popular high yielding rice varieties are poor supplier of Zn in their polished form. Breeding rice varieties with high grain Zn has been suggested to be a sustainable, targeted, food-based and cost effective approach in alleviating Zn deficiency. The physiological, genetic and molecular mechanisms of Zn homeostasis have been well studied, but these mechanisms need to be characterized from a biofortification perspective and should be well integrated with the breeding processes. There is a significant variation for grain Zn in rice germplasm and efforts are being directed at exploiting this variation through breeding to develop high Zn rice varieties. Several QTLs and gene specific markers have been identified for grain Zn and there is a great potential to use them in Marker-Assisted Breeding. A thorough characterization of genotype and environmental interactions is essential to identify key environmental factors influencing grain Zn. Agronomic biofortification has shown inconsistent results, but a combination of genetic and agronomic biofortification strategies may be more effective. Significant progress has been made in developing high Zn rice lines for release in target countries. A holistic breeding approach involving high Zn trait development, high Zn product development, product testing and release, including bioefficacy and bioavailability studies is essential for successful Zn biofortification.

19.
Sci Rep ; 6: 19792, 2016 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-26806528

RESUMO

More than two billion people are micronutrient deficient. Polished grains of popular rice varieties have concentration of approximately 2 µg g(-1) iron (Fe) and 16 µg g(-1) zinc (Zn). The HarvestPlus breeding programs for biofortified rice target 13 µg g(-1) Fe and 28 µg g(-1) Zn to reach approximately 30% of the estimated average requirement (EAR). Reports on engineering Fe content in rice have shown an increase up to 18 µg g(-1) in glasshouse settings; in contrast, under field conditions, 4 µg g(-1) was the highest reported concentration. Here, we report on selected transgenic events, field evaluated in two countries, showing 15 µg g(-1) Fe and 45.7 µg g(-1) Zn in polished grain. Rigorous selection was applied to 1,689 IR64 transgenic events for insert cleanliness and, trait and agronomic performances. Event NASFer-274 containing rice nicotianamine synthase (OsNAS2) and soybean ferritin (SferH-1) genes showed a single locus insertion without a yield penalty or altered grain quality. Endosperm Fe and Zn enrichment was visualized by X-ray fluorescence imaging. The Caco-2 cell assay indicated that Fe is bioavailable. No harmful heavy metals were detected in the grain. The trait remained stable in different genotype backgrounds.


Assuntos
Alimentos Fortificados , Ferro , Micronutrientes , Oryza/química , Zinco , Colômbia , Grão Comestível/química , Endosperma/química , Expressão Gênica , Genótipo , Metais Pesados/química , Oryza/genética , Filipinas , Plantas Geneticamente Modificadas , Característica Quantitativa Herdável , Sementes , Transgenes
20.
Methods Mol Biol ; 1385: 201-22, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26614292

RESUMO

One of the major challenges in plant molecular biology is to generate transgenic plants that express transgenes stably over generations. Here, we describe some routine methods to study transgene locus structure and to analyze transgene expression in plants: Southern hybridization using DIG chemiluminescent technology for characterization of transgenic locus, SYBR Green-based real-time RT-PCR to measure transgene transcript level, and protein immunoblot analysis to evaluate accumulation and stability of transgenic protein product in the target tissue.


Assuntos
Plantas Geneticamente Modificadas , Transgenes/genética , Southern Blotting , Western Blotting , Expressão Gênica , Oryza/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA