Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Appl Microbiol ; 134(6)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37296327

RESUMO

AIMS: The care of patients undergoing long-term urethral catheterization is frequently complicated by Proteus mirabilis infection. This organism forms dense, crystalline biofilms, which block catheters leading to serious clinical conditions. However, there are currently no truly effective approaches to control this problem. Here, we describe the development of a novel theranostic catheter coating, to simultaneously provide early warning of blockage, and actively delay crystalline biofilm formation. METHODS AND RESULTS: The coating comprises of a pH sensitive upper polymer layer (poly(methyl methacrylate-co-methacrylic acid); Eudragit S 100®) and a hydrogel base layer of poly(vinyl alcohol), which is loaded with therapeutic agents (acetohydroxamic acid or ciprofloxacin hydrochloride) and a fluorescent dye, 5(6)-carboxyfluorescein (CF). The elevation of urinary pH due to P. mirabilis urease activity results in the dissolution of the upper layer and release of cargo agents contained in the base layer. Experiments using in vitro models, which were representative of P. mirabilis catheter-associated urinary tract infections, demonstrated that these coatings significantly delay time taken for catheters to block. Coatings containing both CF dye and ciprofloxacin HCl were able to provide an average of ca. 79 h advanced warning of blockage and extend catheter lifespan ca. 3.40-fold. CONCLUSIONS: This study has demonstrated the potential for theranostic, infection-responsive coatings to form a promising approach to combat catheter encrustation and actively delay blockage.


Assuntos
Infecções por Proteus , Infecções Urinárias , Humanos , Cateteres Urinários , Cateterismo Urinário/efeitos adversos , Infecções por Proteus/prevenção & controle , Infecções por Proteus/etiologia , Proteus mirabilis , Infecções Urinárias/prevenção & controle , Biofilmes
2.
Antibiotics (Basel) ; 12(4)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37107138

RESUMO

With the increase in antimicrobial resistance, there is an urgent need to find new antimicrobials. Four particulate antimicrobial compounds, graphite (G), graphene oxide (GO), silver-graphene oxide (Ag-GO) and zinc oxide-graphene oxide (ZnO-GO) were tested against Enterococcus faecium, Escherichia coli, Klebsiella pneumoniae and Staphylococcus aureus. The antimicrobial effects on the cellular ultrastructure were determined using Fourier transform infrared spectroscopy (FTIR), and selected FTIR spectral metrics correlated with cell damage and death arising from exposure to the GO hybrids. Ag-GO caused the most severe damage to the cellular ultrastructure, whilst GO caused intermediate damage. Graphite exposure caused unexpectedly high levels of damage to E. coli, whereas ZnO-GO exposure led to relatively low levels of damage. The Gram-negative bacteria demonstrated a stronger correlation between FTIR metrics, indicated by the perturbation index and the minimal bactericidal concentration (MBC). The blue shift of the combined ester carbonyl and amide I band was stronger for the Gram-negative varieties. FTIR metrics tended to provide a better assessment of cell damage based on correlation with cellular imaging and indicated that damage to the lipopolysaccharide, peptidoglycan and phospholipid bilayers had occurred. Further investigations into the cell damage caused by the GO-based materials will allow the development of this type of carbon-based multimode antimicrobials.

3.
Microorganisms ; 12(1)2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-38257869

RESUMO

A retrospective descriptive study included patients admitted with severe burns over the course of 10 years (2008-2018). Across all patients, there were 39 different species of bacteria, with 23 species being Gram-negative and 16 being Gram-positive bacteria, with also five different species of fungi cultured. Pseudomonas aeruginosa was the most commonly isolated organism, with 57.45% of patients having a positive culture. There was a significant difference in the number of P. aeruginosa isolated from patients that acquired their burns at work, in a garden, inside a vehicle, in a garage or in a public place. In patients that were positive for P. aeruginosa, the number of operations was higher (2.4) and the length of stay was significantly increased (80.1 days). Patients that suffered from substance abuse demonstrated significantly higher numbers of isolated P. aeruginosa (14.8%). Patients that suffered from both mental health illness and substance abuse demonstrated significantly higher numbers of P. aeruginosa isolated (18.5%). In the P. aeruginosa-negative group, there were significantly fewer patients that had been involved in a clothing fire. Furthermore, in the P. aeruginosa-negative patient cohort, the mortality rate was significantly higher (p = 0.002). Since the incidence of P. aeruginosa was also associated with a decreased mortality rate, it may be that patients admitted to hospital for shorter periods of time were less likely to be colonised with P. aeruginosa. This study demonstrates novel factors that may increase the incidence of P. aeruginosa isolated from burn patients.

4.
Antibiotics (Basel) ; 11(5)2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35625195

RESUMO

The topographic features of surfaces are known to affect bacterial retention on a surface, but the precise mechanisms of this phenomenon are little understood. Four coccal-shaped bacteria, Staphylococcus sciuri, Streptococcus pyogenes, Micrococcus luteus, and Staphylococcus aureus, that organise in different cellular groupings (grape-like clusters, tetrad-arranging clusters, short chains, and diploid arrangement, respectively) were used. These differently grouped cells were used to determine how surface topography affected their distribution, density, dispersion, and clustering when retained on titanium surfaces with defined topographies. Titanium-coated surfaces that were smooth and had grooved features of 1.02 µm-wide, 0.21 µm-deep grooves, and 0.59 µm-wide, 0.17 µm-deep grooves were used. The average contact angle of the surfaces was 91°. All bacterial species were overall of a hydrophobic nature, although M. luteus was the least hydrophobic. It was demonstrated that the 1.02 µm-wide featured surface most affected Strep. pyogenes and S. sciuri, and hence the surfaces with the larger surface features most affected the cells with smaller dimensions. The 0.59 µm featured surface only affected the density of the bacteria, and it may be suggested that the surfaces with the smaller features reduced bacterial retention. These results demonstrate that the size of the topographical surface features affect the distribution, density, dispersion, and clustering of bacteria across surfaces, and this is related to the cellular organisation of the bacterial species. The results from this work inform how surface topographical and bacterial properties affect the distribution, density, dispersion, and clustering of bacterial retention.

5.
Access Microbiol ; 3(10): 000273, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34816092

RESUMO

Photodynamic antimicrobial chemotherapy (PACT) is a novel alternative antimicrobial therapy that elicits a broad mechanism of action and therefore has a low probability of generating resistance. Such properties make PACT ideally suited for utilization in localized applications such as burn wounds. The aim of this study was to determine the antimicrobial activity of MB and temoporfin against both a S. aureus isolate and a P. aeruginosa isolate in light (640 nm) and dark conditions at a range of time points (0-20 min). A Staphylococcus aureus isolate and a Pseudomonas aeruginosa isolate were treated in vitro with methylene blue (MB) and temoporfin under different conditions following exposure to light at 640 nm and in no-light (dark) conditions. Bacterial cell viability [colony-forming units (c.f.u.) ml-1] was then calculated. Against P. aeruginosa , when MB was used as the photosensitizer, no phototoxic effect was observed in either light or dark conditions. After treatment with temoporfin, a reduction of less than one log (7.00×107 c.f.u. ml-1) was observed in the light after 20 min of exposure. However, temoporfin completely eradicated S. aureus in both light and dark conditions after 1 min (where a seven log reduction in c.f.u. ml-1 was observed). Methylene blue resulted in a loss of S. aureus viability, with a two log reduction in bacterial viability (c.f.u. ml-1) reported in both light and dark conditions after 20 min exposure time. Temoporfin demonstrated greater antimicrobial efficacy than MB against both the S. aureus and P. aeruginosa isolates tested. At 12.5 µM temoporfin resulted in complete eradication of S. aureus . In light of this study, further research into the validity of PACT, coupled with the photosensitizers (such as temoporfin), should be conducted in order to potentially develop alternative antimicrobial treatment regimes for burn wounds.

6.
Artigo em Inglês | MEDLINE | ID: mdl-33808807

RESUMO

Bacterial retention and organic fouling on meat preparation surfaces can be influenced by several factors. Surfaces with linear topographies and defined chemistries were used to determine how the orientation of the surface features affected cleaning efficacy. Fine polished (irregular linear) stainless steel (FPSS), titanium coated fine polished (irregular linear) stainless steel (TiFP), and topographically regular, linear titanium coated surfaces (RG) were fouled with Escherichia coli mixed with a meat exudate (which was utilised as a conditioning film). Surfaces were cleaned along or perpendicular to the linear features for one, five, or ten wipes. The bacteria were most easily removed from the titanium coated and regular featured surfaces. The direction of cleaning (along or perpendicular to the surface features) did not influence the amount of bacteria retained, but meat extract was more easily removed from the surfaces when cleaned in the direction along the linear surface features. Following ten cleans, there was no significant difference in the amount of cells or meat exudate retained on the surfaces cleaned in either direction. This study demonstrated that for the E. coli cells, the TiFP and RG surfaces were easiest to clean. However, the direction of the clean was important for the removal of the meat exudate from the surfaces.


Assuntos
Aço Inoxidável , Titânio , Escherichia coli , Exsudatos e Transudatos , Carne , Propriedades de Superfície
7.
Arch Microbiol ; 203(6): 3015-3024, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33782717

RESUMO

Due to the ever-increasing rise of antimicrobial resistant (AMR) bacteria, the development of alternative antimicrobial agents is a global priority. The antimicrobial activity of ionic gold was explored against four Pseudomonas aeruginosa strains with different AMR profiles in order to determine the antimicrobial activity of ionic gold and elucidate the mechanisms of action. Disc diffusion assays (zone of inhibition: ZoI) coupled with minimum inhibitory/bactericidal concentrations (MIC/MBC) were conducted to determine the antimicrobial efficacy of ionic gold. Scanning electron microscopy (SEM) was used to visualise morphological changes to the bacterial cell ultrastructure. Strains with increased AMR were slower to grow which is likely a fitness cost due to the enhanced AMR activity. Although greater concentrations of ionic gold were required to promote antimicrobial activity, ionic gold demonstrated similar antimicrobial values against all strains tested. Lowry assay results indicated that protein leakage was apparent following incubation with ionic gold, whilst SEM revealed cellular ultrastructure damage. This study suggests that the application of ionic gold as an alternative antimicrobial is promising, particularly against AMR P. aeruginosa. The antimicrobial activity of ionic gold against P. aeruginosa could potentially be utilised as an alternative therapeutic option in wound management, an approach that could benefit healthcare systems worldwide.


Assuntos
Ouro , Pseudomonas aeruginosa , Antibacterianos/farmacologia , Ouro/farmacologia , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Varredura , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/ultraestrutura
8.
Artigo em Inglês | MEDLINE | ID: mdl-33050212

RESUMO

The reduction of biofouling and the reduction of cross-contamination in the food industry are important aspects of safety management systems. Polymeric surfaces are used extensively throughout the food production industry and therefore ensuring that effective cleaning regimes are conducted is vital. Throughout this study, the influence of the surface characteristics of three different polymeric surfaces, polytetrafluoroethylene (PTFE), poly(methyl methacrylate) (PMMA) and polyethylene terephthalate (PET), on the removal of Escherichia coli using a wipe clean method utilising 3% sodium hypochlorite was determined. The PTFE surfaces were the roughest and demonstrated the least wettable surface (118.8°), followed by the PMMA (75.2°) and PET surfaces (53.9°). Following cleaning with a 3% sodium hypochlorite solution, bacteria were completely removed from the PTFE surfaces, whilst the PMMA and PET surfaces still had high numbers of bacteria recovered (1.2 × 107 CFU/mL and 6.3 × 107 CFU/mL, respectively). When bacterial suspensions were applied to the surfaces in the presence of a blood conditioning film, cleaning with sodium hypochlorite demonstrated that no bacteria were recovered from the PMMA surface. However, on both the PTFE and PET surfaces, bacteria were recovered at lower concentrations (2.0 × 102 CFU/mL and 1.3 × 103 CFU/mL, respectively). ATP bioluminescence results demonstrated significantly different ATP concentrations on the surfaces when soiled (PTFE: 132 relative light units (RLU), PMMA: 80 RLU and PET: 99 RLU). Following cleaning, both in the presence and absence of a blood conditioning film, all the surfaces were considered clean, producing ATP concentrations in the range of 0-2 RLU. The results generated in this study demonstrated that the presence of a blood conditioning film significantly altered the removal of bacteria from the polymeric surfaces following a standard cleaning regime. Conditioning films which represent the environment where the surface is intended to be used should be a vital part of the test regime to ensure an effective disinfection process.


Assuntos
Desinfecção , Escherichia coli , Microbiologia de Alimentos , Polímeros/química , Molhabilidade , Materiais Revestidos Biocompatíveis , Fluorocarbonos/química , Microbiologia de Alimentos/métodos , Polietilenotereftalatos/química , Polimetil Metacrilato/química , Propriedades de Superfície
9.
Colloids Surf B Biointerfaces ; 173: 303-311, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30308455

RESUMO

External bone fixation devices provide support and rehabilitation for severely damaged/broken bones, however, this invasive procedure is prone to infection. Zirconium nitride/silver (Ti-ZrN/Ag) coatings were characterised for surface topography, chemical composition, physicochemistry and antimicrobial efficacy (against Staphylococcus aureus and Staphylococcus epidermidis), in the presence of a blood conditioning film. The conditioning film altered the width of the microtopography of the surfaces however, the depth of the features remained relatively constant. The conditioning film also altered the coatings from hydrophobic to hydrophilic/partially hydrophilic surfaces. Following the MATH assay, the presence of a conditioning film reduced affinity towards the hydrocarbons for both microorganisms. The addition of a blood conditioning film reduced the antimicrobial efficacy of the Ti-ZrN/Ag coatings but also reduced the number of retained bacteria. This study suggests that the presence of a pre-defined blood conditioning film may result in surfaces with anti-adhesive properties, potentially leading to a reduction in bacterial retention. This, combined with the antimicrobial efficacy of the coatings, could reduce the risk of infection on biomaterial surfaces.


Assuntos
Antibacterianos/química , Células Sanguíneas/química , Materiais Revestidos Biocompatíveis/química , Plasma/química , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus epidermidis/efeitos dos fármacos , Zircônio/química , Antibacterianos/farmacologia , Aderência Bacteriana/efeitos dos fármacos , Interface Osso-Implante/microbiologia , Materiais Revestidos Biocompatíveis/farmacologia , Contagem de Colônia Microbiana , Fixadores Externos/microbiologia , Espaço Extracelular/química , Humanos , Microscopia de Força Atômica , Prata/química , Prata/farmacologia , Infecções Estafilocócicas/prevenção & controle , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus epidermidis/crescimento & desenvolvimento , Propriedades de Superfície , Titânio/química , Titânio/farmacologia , Zircônio/farmacologia
10.
Phys Chem Chem Phys ; 20(30): 20010-20022, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30022207

RESUMO

We report the fabrication, characterisation (SEM/EDX, TEM, XRD, XPS and Raman spectroscopy) and electrochemical properties of graphite and graphene paste electrodes with varying lateral flake sizes. The fabricated paste electrodes are electrochemically analysed using both outer-sphere and inner-sphere redox probes, namely; hexaammineruthenium(iii) chloride, N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD), potassium ferrocyanide(ii) and ammonium ferrous(ii) sulphate. Upon comparison of different graphite paste electrodes, a clear correlation between the lateral flake sizes (La), ranging from 1.5 mm-0.5 µm, and electrochemical activity (heterogeneous electron transfer (HET) kinetics) is evident, where an improvement in the HET is observed at smaller lateral flake sizes. We infer that the beneficial response evident when employing laterally smaller flakes is due to an increased number of edge plane like-sites/defects available upon the electrode surface, facilitating electron transfer. Interestingly, given that the overall lateral flake sizes of the graphenes utilised (10.0-1.3 µm) were significantly smaller than those studied previously, an improvement in HET kinetics was also evident with the reduction of lateral flake size; the extent to which is redox-probe dependent. Improvements are observed up to a distinct point, termed the 'lateral size threshold' (ca. ≤2 µm) where the electrochemical reversible limit is approached. Further support is provided from density functional theory (DFT), exploring the electronic structure (i.e. HOMO-LUMO) as a function of flake size, which demonstrates that the coverage of edge plane like-sites/defects comprising the geometric structure of the relatively small graphene flakes is such that effectively the entire flake has become electrochemically active. In this study, the importance of lateral flake size with respect to electrochemical reactivity at carbon-based electrodes has been demonstrated alongside a structural relationship upon HET performance, a phenomenon that has not previously been described in the literature. Such work is both highly important and informative for the field of electrochemistry and electrode performance, with potential implications in a plethora of areas, ranging from novel renewable energy sources to electroanalytical sensing platforms.

11.
Sci Rep ; 8(1): 6251, 2018 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-29662069

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

12.
Sci Rep ; 8(1): 1497, 2018 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-29367635

RESUMO

Severely broken bones often require external bone fixation pins to provide support but they can become infected. In order to reduce such infections, novel solutions are required. Titanium zirconium nitride (Ti-ZrN) and Ti-ZrN silver (Ti-ZrN/Ag) coatings were deposited onto stainless steel. Surface microtopography demonstrated that on the silver containing surfaces, S a and S v values demonstrated similar trends whilst the R a , average height and RMS value and S p values increased with increasing silver concentration. On the Ti-ZrN/Ag coatings, surface hydrophobicity followed the same trend as the S a and S v values. An increase in dead Staphylococcus aureus and Staphylococcus epidermidis cells was observed on the coatings with a higher silver concentration. Using CTC staining, a significant increase in S. aureus respiration on the silver containing surfaces was observed in comparison to the stainless steel control whilst against S. epidermidis, no significant difference in viable cells was observed across the surfaces. Cytotoxicity testing revealed that the TiZrN coatings, both with and without varying silver concentrations, did not possess a detrimental effect to a human monocyte cell line U937. This work demonstrated that such coatings have the potential to reduce the viability of bacteria that result in pin tract infections.


Assuntos
Anti-Infecciosos/farmacologia , Materiais Revestidos Biocompatíveis/química , Viabilidade Microbiana/efeitos dos fármacos , Prata/farmacologia , Titânio/farmacologia , Zircônio/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Humanos , Monócitos/efeitos dos fármacos , Aço Inoxidável/química , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/fisiologia , Staphylococcus epidermidis/efeitos dos fármacos , Staphylococcus epidermidis/fisiologia , Células U937
13.
RSC Adv ; 8(41): 23433-23441, 2018 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35540130

RESUMO

The rise in multidrug resistant bacteria is an area of growing concern and it is essential to identify new biocidal agents. Cationic grafted compounds were investigated for their antimicrobial properties using minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) tests. Synergy testing was carried out using the compounds in the presence of ultraviolet (UV). Fractional inhibitory concentration (FIC) and fractional bactericidal concentration (FBC) tests were carried out using the cationic molecules in conjunction with metal ion solutions of gold, silver, palladium, platinum, rhodium, titanium, tin, vanadium and molybdenum. Individually, the cationic compounds containing quaternary amines, polyphenylene vinylene (PPV) with long polyacrylate grafts (PPV-g-PMETAC (HMw)), polyphenylene ethylene (PPE) with long polyacrylate grafts (PPE-g-PMETAC (HMw)), polyphenylene vinylene (PPV) with short polyacrylate grafts (PPV-g-PMETAC (LMw)) and polyphenylene ethylene (PPE) with short polyacrylate grafts (PPE-g-PMETAC (LMw)) were effective against Enterococcus faecium. The most successful compound under UV was PPV-g-PMETAC (HMw). Following the FICs, palladium and rhodium ion solutions caused a synergistic reaction with all four tested compounds. The presence of conjugated bonds in the cationic molecules increased its antimicrobial activity. These results suggest that the chemical backbone of the compounds, alongside the chain lengths and chain attachment affect the antimicrobial efficacy of a compound. These factors should be taken into consideration when formulating new biocidal combinations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA