Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
JCI Insight ; 8(22)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37815863

RESUMO

Ventricular arrhythmias (VAs) in heart failure are enhanced by sympathoexcitation. However, radiotracer studies of catecholamine uptake in failing human hearts demonstrate a proclivity for VAs in patients with reduced cardiac sympathetic innervation. We hypothesized that this counterintuitive finding is explained by heterogeneous loss of sympathetic nerves in the failing heart. In a murine model of dilated cardiomyopathy (DCM), delayed PET imaging of sympathetic nerve density using the catecholamine analog [11C]meta-Hydroxyephedrine demonstrated global hypoinnervation in ventricular myocardium. Although reduced, sympathetic innervation in 2 distinct DCM models invariably exhibited transmural (epicardial to endocardial) gradients, with the endocardium being devoid of sympathetic nerve fibers versus controls. Further, the severity of transmural innervation gradients was correlated with VAs. Transmural innervation gradients were also identified in human left ventricular free wall samples from DCM versus controls. We investigated mechanisms underlying this relationship by in silico studies in 1D, 2D, and 3D models of failing and normal human hearts, finding that arrhythmogenesis increased as heterogeneity in sympathetic innervation worsened. Specifically, both DCM-induced myocyte electrical remodeling and spatially inhomogeneous innervation gradients synergistically worsened arrhythmogenesis. Thus, heterogeneous innervation gradients in DCM promoted arrhythmogenesis. Restoration of homogeneous sympathetic innervation in the failing heart may reduce VAs.


Assuntos
Cardiomiopatia Dilatada , Humanos , Camundongos , Animais , Cardiomiopatia Dilatada/diagnóstico por imagem , Coração , Miocárdio , Arritmias Cardíacas/diagnóstico por imagem , Catecolaminas
2.
J Nucl Med ; 64(11): 1772-1778, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37797974

RESUMO

Radionuclide therapy targeting prostate-specific membrane antigen (PSMA) is a promising option for metastatic castration-resistant prostate cancer. Clinical experience using 177Lu or 225Ac has demonstrated encouraging treatment responses; however, responses are not durable. Dual-isotope combinations, or "tandem" approaches, may improve tolerability while retaining a high tumor dose. In this study, we directly compared α- versus ß-particle treatment, as well as a combination thereof, at different stages of disease in a murine model of disseminated prostate cancer. Methods: First, to determine comparable injected activities from 177Lu- and 225Ac-PSMA-617, ex vivo biodistribution studies were performed at 5 time points after treatment of C4-2 subcutaneous tumor-bearing NSG mice. To establish a more representative model of metastatic prostate cancer, NSG mice were inoculated with luciferase-expressing C4-2 cells in the left ventricle, leading to disseminated visceral and bone lesions. At either 3 or 5 wk after inoculation, the mice were treated with equivalent tumor dose-depositing activities of 177Lu- or 225Ac-PSMA-617 alone or in combination (35 MBq of 177Lu, 40 kBq of 225Ac, or 17 MBq of 177Lu + 20 kBq 225Ac; 10/group). Disease burden was assessed by weekly bioluminescence imaging. Treatment efficacy was evaluated using whole-body tumor burden and overall survival. Results: The ex vivo biodistribution studies revealed that 35 MBq of 177Lu and 40 kBq of 225Ac yield equivalent absorbed tumor doses in a subcutaneous C4-2 model. The disease burden of mice treated at 3 wk after inoculation (microscopic disease) with 177Lu was not significantly different from that of untreated mice. However, 225Ac-PSMA-617 both as a single agent and in combination with 177Lu (17 MBq of 177Lu + 20 kBq of 225Ac) were associated with significant whole-body tumor growth retardation and survival benefit (overall survival, 8.3 wk for nontreatment, 9.4 wk for 177Lu, 15.3 wk for 225Ac alone, and 14.1 wk for tandem therapy). When treated at 5 wk after inoculation (macroscopic disease), all treatment groups showed retarded tumor growth and improved survival, with no significant differences between 225Ac alone and administration of half the 225Ac activity in tandem with 177Lu (overall survival, 7.9 wk for nontreatment, 10.3 wk for 177Lu, 14.6 wk for 225Ac alone, and 13.2 wk for tandem therapy). Conclusion: Treatment of a disseminated model of prostate cancer with simultaneous 225Ac- and 177Lu-PSMA-617 results in significantly decreased tumor growth compared with 177Lu, which was ineffective as a single agent against microscopic lesions. Mice treated later in the disease progression and bearing macroscopic, millimeter-sized lesions experienced significant tumor growth retardation and survival benefit in both monoisotopic and tandem regimens of 177Lu and 225Ac. Although the greatest benefits were observed with the single agent 225Ac, the tandem arm experienced no significant difference in disease burden or survival benefit, suggesting that the reduced activity of 225Ac was adequately compensated in the tandem arm. The superior therapeutic efficacy of 225Ac in this model suggests a preference for α-emitters alone, or possibly in combination, in the microscopic disease setting.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Compostos Radiofarmacêuticos , Masculino , Humanos , Animais , Camundongos , Compostos Radiofarmacêuticos/uso terapêutico , Neoplasias de Próstata Resistentes à Castração/patologia , Distribuição Tecidual , Modelos Animais de Doenças , Antígeno Prostático Específico , Dipeptídeos/uso terapêutico , Compostos Heterocíclicos com 1 Anel/uso terapêutico , Transtornos do Crescimento/tratamento farmacológico , Lutécio/uso terapêutico
3.
EJNMMI Res ; 12(1): 65, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36182983

RESUMO

BACKGROUND: PSMA-TO-1 ("Tumor-Optimized-1") is a novel PSMA ligand with longer circulation time than PSMA-617. We compared the biodistribution in subcutaneous tumor-bearing mice of PSMA-TO-1, PSMA-617 and PSMA-11 when labeled with 68Ga and 177Lu, and the survival after treatment with 225Ac-PSMA-TO-1/-617 in a murine model of disseminated prostate cancer. We also report dosimetry data of 177Lu-PSMA-TO1/-617 in prostate cancer patients. METHODS: First, PET images of 68Ga-PSMA-TO-1/-617/-11 were acquired on consecutive days in three mice bearing subcutaneous C4-2 xenografts. Second, 50 subcutaneous tumor-bearing mice received either 30 MBq of 177Lu-PSMA-617 or 177Lu-PSMA-TO-1 and were sacrificed at 1, 4, 24, 48 and 168 h for ex vivo gamma counting and biodistribution. Third, mice bearing disseminated lesions via intracardiac inoculation were treated with either 40 kBq of 225Ac-PSMA-617, 225Ac-PSMA-TO-1, or remained untreated and followed for survival. Additionally, 3 metastatic castration-resistant prostate cancer patients received 500 MBq of 177Lu-PSMA-TO-1 under compassionate use for dosimetry purposes. Planar images with an additional SPECT/CT acquisition were acquired for dosimetry calculations. RESULTS: Tumor uptake measured by PET imaging of 68Ga-labeled agents in mice was highest using PSMA-617, followed by PSMA-TO-1 and PSMA-11. 177Lu-PSMA tumor uptake measured by ex vivo gamma counting at subsequent time points tended to be greater for PSMA-TO-1 up to 1 week following treatment (p > 0.13 at all time points). This was, however, accompanied by increased kidney uptake and a 26-fold higher kidney dose of PSMA-TO-1 compared with PSMA-617 in mice. Mice treated with a single-cycle 225Ac-PSMA-TO-1 survived longer than those treated with 225Ac-PSMA-617 and untreated mice, respectively (17.8, 14.5 and 7.7 weeks, respectively; p < 0.0001). Kidney, salivary gland, bone marrow and mean ± SD tumor dose coefficients (Gy/GBq) for 177Lu-PSMA-TO-1 in patients #01/#02/#03 were 2.5/2.4/3.0, 1.0/2.5/2.3, 0.14/0.11/0.10 and 0.42 ± 0.03/4.45 ± 0.07/1.8 ± 0.57, respectively. CONCLUSIONS: PSMA-TO-1 tumor uptake tended to be greater than that of PSMA-617 in both preclinical and clinical settings. Mice treated with 225Ac-PSMA-TO-1 conferred a significant survival benefit compared to 225Ac-PSMA-617 despite the accompanying increased kidney uptake. In humans, PSMA-TO-1 dosimetry estimates suggest increased tumor absorbed doses; however, the kidneys, salivary glands and bone marrow are also exposed to higher radiation doses. Thus, additional preclinical studies are needed before further clinical use.

4.
J Nucl Med ; 63(7): 1021-1026, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34740953

RESUMO

Fibroblast activation protein (FAP)-expressing cancer-associated fibroblasts confer treatment resistance and promote metastasis and immunosuppression. Because FAP is overexpressed in many cancers, radiolabeled molecules targeting FAP are studied for their use as pancancer theranostic agents. This study aimed to establish the spectrum of FAP expression across various cancers by immunohistochemistry and to explore whether 68Ga FAP inhibitor (FAPi)-46 PET biodistribution faithfully reflects FAP expression from resected cancer and non-cancer specimens. Methods: We conducted a FAP expression screening using immunohistochemistry on a pancancer human tissue microarray (141 patients, 14 different types of cancer) and an interim analysis of a prospective exploratory imaging trial in cancer patients. Volunteer patients underwent 1 whole-body 68Ga-FAPi-46 PET/CT scan and, subsequently, surgical resection of their primary tumor or metastasis. 68Ga-FAPi-46 PET SUVmax and SUVmean was correlated with FAP immunohistochemistry score in cancer and tumor-adjacent non-cancer tissues for each patient. Results: FAP was expressed across all 14 cancer types on tissue microarray with variable intensity and frequency, ranging from 25% to 100% (mean, 76.6% ± 25.3%). Strong FAP expression was observed in 50%-100% of cancers of the bile duct, bladder, colon, esophagus, stomach, lung, oropharynx, ovary, and pancreas. Fifteen patients with various cancer types (colorectal [n = 4], head and neck [n = 3], pancreas [n = 2], breast [n = 2], stomach [n = 1], esophagus [n = 2], and uterus [n = 1]) underwent surgery after their 68Ga-FAPi-46 PET/CT scan within a mean interval of 16.1 ± 14.4 d. 68Ga-FAPi-46 SUVs and immunohistochemistry scores were higher in cancer than in tumor-adjacent non-cancer tissue: mean SUVmax 7.7 versus 1.6 (P < 0.001), mean SUVmean 6.2 versus 1.0 (P < 0.001), and mean FAP immunohistochemistry score 2.8 versus 0.9 (P < 0.001). FAP immunohistochemistry scores strongly correlated with 68Ga-FAPi 46 SUVmax and SUVmean: r = 0.781 (95% CI, 0.376-0.936; P < 0.001) and r = 0.783 (95% CI, 0.379-0.936; P < 0.001), respectively. Conclusion: In this interim analysis of a prospective exploratory imaging trial, 68Ga-FAPi-46 PET biodistribution across multiple cancers strongly correlated with FAP tissue expression. These findings support further exploration of FAPi PET as a pancancer imaging biomarker for FAP expression and as a stratification tool for FAP-targeted therapies.


Assuntos
Radioisótopos de Gálio , Neoplasias , Feminino , Humanos , Imuno-Histoquímica , Neoplasias/diagnóstico por imagem , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Estudos Prospectivos , Distribuição Tecidual
5.
J Nucl Med ; 62(10): 1440-1446, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34016732

RESUMO

The objective of this study was to determine prospectively the efficacy profile of 2 activity regimens of 177Lu-PSMA therapy in patients with progressive metastatic castrate-resistant prostate cancer (mCRPC): 6.0 vs. 7.4 GBq. Methods: RESIST-PC (NCT03042312) was a prospective multicenter phase 2 trial. Patients with progressive mCRPC after ≥ 1 novel androgen-axis drug, either chemotherapy naïve or postchemotherapy, with sufficient bone marrow reserve, normal kidney function, and sufficient PSMA expression by PSMA PET were eligible. Patients were randomized (1:1) into 2 activity groups (6.0 or 7.4 GBq) and received up to 4 cycles every 8 wk. The primary endpoint was the efficacy of 177Lu-PSMA measured by the prostate-specific antigen (PSA) response rate (RR) after 2 cycles (≥50% decline from baseline). Secondary endpoints included the PSA RR (≥50% decline) at any time (best response), and overall survival (OS). Results: The study was closed at enrollment of 71/200 planned patients because of sponsorship transfer. We report here the efficacy of the University of California Los Angeles cohort results only (n = 43). The PSA RRs after 2 cycles and at any time were 11/40 (28%, 95% CI 15-44), 6/13 (46%, 95% CI 19-75), and 5/27 (19%, 95% CI 6-38), and 16/43 (37%, 95% CI 23-53), 7/14 (50%, 95% CI 23-77), and 9/29 (31%, 95% CI 15-51) in the whole cohort, the 6.0-GBq group, and the 7.4-GBq group, respectively (P = 0.12 and P = 0.31). The median OS was 14.0 mo (95% CI 10.1-17.9), 15.8 (95% CI 11.8-19.4), and 13.5 (95% CI 10.0-17.0) in the whole cohort, the 6.0-GBq group, and the 7.4 GBq group, respectively (P = 0.87). OS was longer in patients who experienced a PSA decline ≥ 50% at any time than in those who did not: median, 20.8 versus 10.8 mo (P = 0.005). Conclusion: In this prospective phase 2 trial of 177Lu-PSMA for mCRPC, the median OS was 14 mo. Despite the heterogeneous study population and the premature study termination, the efficacy profile of 177Lu-PSMA appeared to be favorable and comparable with both activity regimens (6.0 vs. 7.4 GBq). Results justify confirmation with real-world data matched-pair analysis and further clinical trials to refine and optimize the 177Lu-PSMA therapy administration scheme to improve tumor radiation dose delivery and efficacy.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Idoso , Estudos de Coortes , Dipeptídeos , Compostos Heterocíclicos com 1 Anel , Humanos , Masculino , Pessoa de Meia-Idade , Antígeno Prostático Específico
6.
J Nucl Med ; 62(2): 149-155, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33443068

RESUMO

The University of California Los Angeles (UCLA) and University of California San Francisco (UCSF) codeveloped 68Ga-PSMA-11 by conducting a bicentric pivotal phase 3 clinical trial for PET imaging for prostate cancer. On December 1, 2020, 2 separate new drug applications (NDAs) submitted by each institution (NDA 212642 for UCLA and NDA 212643 for UCSF) were approved by the Food and Drug Administration as the first drug for PET imaging of prostate-specific membrane antigen (PSMA)-positive lesions in men with prostate cancer. This article briefly describes the background, clinical development, regulatory approach, and regulatory process for NDA filing and approval. In the second part of this article, key chemistry, manufacturing, and controls (CMC) information is provided to facilitate abbreviated new drug application (ANDA) submission.


Assuntos
Aprovação de Drogas , Ácido Edético/análogos & derivados , Oligopeptídeos , United States Food and Drug Administration/legislação & jurisprudência , Isótopos de Gálio , Radioisótopos de Gálio , Colaboração Intersetorial , Tomografia por Emissão de Pósitrons , Estados Unidos
7.
Eur J Nucl Med Mol Imaging ; 48(2): 501-508, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32808077

RESUMO

PURPOSE: Readers need to be informed about potential pitfalls of [68Ga]Ga-PSMA-11 PET interpretation. METHODS: Here we report [68Ga]Ga-PSMA-11 PET findings discordant with the histopathology/composite reference standard in a recently published prospective trial on 635 patients with biochemically recurrent prostate cancer. RESULTS: Consensus reads were false positive in 20 regions of 17/217 (8%) patients with lesion validation. Majority of the false positive interpretations (13 of 20, 65%) occurred in the context of suspected prostate (bed) relapse (T) after radiotherapy (n = 11); other false positive findings were noted for prostate bed post prostatectomy (T, n = 2), pelvic nodes (N, n = 2), or extra pelvic lesions (M, n = 5). Major sources of false positive findings were PSMA-expressing residual adenocarcinoma with marked post-radiotherapy treatment effect. False negative interpretation occurred in 8 regions of 6/79 (8%) patients with histopathology validation, including prostate (bed) (n = 5), pelvic nodes (n = 1), and extra pelvic lesions (n = 2). Lesions were missed mostly due to small metastases or adjacent bladder/urine uptake. CONCLUSION: [68Ga]Ga-PSMA-11 PET at biochemical recurrence resulted in less than 10% false positive interpretations. Post-radiotherapy prostate uptake was a major source of [68Ga]Ga-PSMA-11 PET false positivity. In few cases, PET correctly detects residual PSMA expression post-radiotherapy, originating however from treated, benign tissue or potentially indolent tumor remnants. TRIAL REGISTRATION NUMBER: ClinicalTrials.gov Identifiers: NCT02940262 and NCT03353740.


Assuntos
Próstata , Neoplasias da Próstata , Ácido Edético , Humanos , Masculino , Recidiva Local de Neoplasia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Estudos Prospectivos , Prostatectomia , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/radioterapia , Neoplasias da Próstata/cirurgia
8.
J Nucl Med ; 62(7): 989-995, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33277393

RESUMO

Prostate-specific membrane antigen (PSMA)-targeted radioligand therapy (RLT) is effective against prostate cancer (PCa), but all patients relapse eventually. Poor understanding of the underlying resistance mechanisms represents a key barrier to development of more effective RLT. We investigate the proteome and phosphoproteome in a mouse model of PCa to identify signaling adaptations triggered by PSMA RLT. Methods: Therapeutic efficacy of PSMA RLT was assessed by tumor volume measurements, time to progression, and survival in C4-2 or C4-2 TP53-/- tumor-bearing nonobese diabetic scid γ-mice. Two days after RLT, the proteome and phosphoproteome were analyzed by mass spectrometry. Results: PSMA RLT significantly improved disease control in a dose-dependent manner. Proteome and phosphoproteome datasets revealed activation of genotoxic stress response pathways, including deregulation of DNA damage/replication stress response, TP53, androgen receptor, phosphatidylinositol-3-kinase/AKT, and MYC signaling. C4-2 TP53-/- tumors were less sensitive to PSMA RLT than were parental counterparts, supporting a role for TP53 in mediating RLT responsiveness. Conclusion: We identified signaling alterations that may mediate resistance to PSMA RLT in a PCa mouse model. Our data enable the development of rational synergistic RLT-combination therapies to improve outcomes for PCa patients.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Humanos , Masculino , Próstata , Antígeno Prostático Específico
9.
J Nucl Med ; 61(12): 1793-1799, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32358094

RESUMO

Prostate-specific membrane antigen (PSMA) ligand PET induces management changes in patients with prostate cancer. We aim to better characterize the impact of 68Ga-PSMA-11 PET (68Ga-PSMA PET) on management of recurrent prostate cancer in a large prospective cohort. Methods: We report management changes after 68Ga-PSMA PET, a secondary endpoint of a prospective multicenter trial in men with biochemical recurrence of prostate cancer. Pre-PET (Q1), post-PET (Q2), and posttreatment (Q3) questionnaires were sent to referring physicians recording site of recurrence and intended (Q1 to Q2 change) and implemented (Q3) therapeutic and diagnostic management. Results: Q1 and Q2 response was collected for 382 of 635 patients (60%, intended cohort), and Q1, Q2, and Q3 response was collected for 206 patients (32%, implemented cohort). An intended management change occurred in 260 of 382 (68%) patients. The intended change was considered major in 176 of 382 (46%) patients. Major changes occurred most often for patients with prostate-specific antigen of 0.5 to less than 2.0 ng/mL (81/147, 55%). By analysis of stage groups, management change was consistent with PET disease location, that is, a majority of major changes toward active surveillance (47%) for unknown disease site (103/382, 27%), toward local or focal therapy (56%) for locoregional disease (126/382, 33%), and toward systemic therapy (69% M1a; 43% M1b/c) for metastatic disease (153/382, 40%). According to Q3 responses, the intended management was implemented in 160 of 206 (78%) patients. In total, 150 intended diagnostic tests, mostly CT (n = 43, 29%) and bone scans or 18F-NaF PET (n = 52, 35%), were prevented by 68Ga-PSMA PET; 73 tests, mostly biopsies (n = 44, 60%) as requested by the study protocol, were triggered. Conclusion: According to referring physicians, sites of recurrence were clarified by 68Ga-PSMA PET, and disease localization translated into management changes in more than half of patients with biochemical recurrence of prostate cancer.


Assuntos
Ácido Edético/análogos & derivados , Oligopeptídeos , Neoplasias da Próstata/diagnóstico por imagem , Adulto , Idoso , Idoso de 80 Anos ou mais , Isótopos de Gálio , Radioisótopos de Gálio , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Neoplasias da Próstata/patologia , Neoplasias da Próstata/terapia , Recidiva
10.
Theranostics ; 10(6): 2612-2620, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32194823

RESUMO

225Ac-PSMA-617 targeted-therapy has demonstrated efficacy in 75-85% of patients; however, responses are not durable. We aimed to establish translatable mouse models of disseminated prostate cancer (PCa) to evaluate effectiveness of 225Ac-PSMA-617 at various disease stages. Methods: C4-2, C4-2B, or 22Rv1 cells were injected into the left ventricle of male NSG mice. Disease progression was monitored using bioluminescence imaging (BLI). For treatment, mice were injected with 40 kBq 225Ac-PSMA-617 at one (early treatment cohort) or three weeks (late treatment cohort) post-inoculation. Treatment efficacy was monitored by BLI of whole-body tumor burden. Mice were sacrificed based on body conditioning score. Results: C4-2 cells yielded metastases in liver, lungs, spleen, stomach, bones, and brain - achieving a clinically relevant model of widespread metastatic disease. The disease burden in the early treatment cohort was stable over 27 weeks in 5/9 mice and progressive in 4/9 mice. These mice were sacrificed due to brain metastases. Median survival of the late treatment cohort was superior to controls (13 vs. 7 weeks; p<0.0001) but inferior to that in the early treatment cohort (13 vs. 27 weeks; p<0.001). Late cohort mice succumbed to extensive liver involvement. The 22Rv1 and C4-2B systemic models were not used for treatment due to high kidney metastatic burden or low take rate, respectively. Conclusion: C4-2 cells reproduced metastatic cancer spread most relevantly. Early treatment with 225Ac-PSMA-617 prevented liver metastases and led to significant survival benefit. Late treatment improved survival without reducing tumor burden in the liver, the main site of metastasis. The current findings suggest that early 225Ac-PSMA-617 intervention is more efficacious in the setting of widespread metastatic PCa.


Assuntos
Actínio/uso terapêutico , Dipeptídeos/uso terapêutico , Compostos Heterocíclicos com 1 Anel/uso terapêutico , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Compostos Radiofarmacêuticos/uso terapêutico , Partículas alfa/uso terapêutico , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Estudos de Viabilidade , Humanos , Masculino , Camundongos , Antígeno Prostático Específico
11.
Nucl Med Biol ; 82-83: 41-48, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31891883

RESUMO

INTRODUCTION: Radio thin layer chromatography (radio-TLC) is commonly used to analyze purity of radiopharmaceuticals or to determine the reaction conversion when optimizing radiosynthesis processes. In applications where there are few radioactive species, radio-TLC is preferred over radio-high-performance liquid chromatography due to its simplicity and relatively quick analysis time. However, with current radio-TLC methods, it remains cumbersome to analyze a large number of samples during reaction optimization. In a couple of studies, Cerenkov luminescence imaging (CLI) has been used for reading radio-TLC plates spotted with a variety of isotopes. We show that this approach can be extended to develop a high-throughput approach for radio-TLC analysis of many samples. METHODS: The high-throughput radio-TLC analysis was carried out by performing parallel development of multiple radioactive samples spotted on a single TLC plate, followed by simultaneous readout of the separated samples using Cerenkov imaging. Using custom-written MATLAB software, images were processed and regions of interest (ROIs) were drawn to enclose the radioactive regions/spots. For each sample, the proportion of integrated signal in each ROI was computed. Various crude samples of [18F]fallypride, [18F]FET and [177Lu]Lu-PSMA-617 were prepared for demonstration of this new method. RESULTS: Benefiting from a parallel developing process and high resolution of CLI-based readout, total analysis time for eight [18F]fallypride samples was 7.5 min (2.5 min for parallel developing, 5 min for parallel readout), which was significantly shorter than the 48 min needed using conventional approaches (24 min for sequential developing, 24 min for sequential readout on a radio-TLC scanner). The greater separation resolution of CLI enabled the discovery of a low-abundance side product from a crude [18F]FET sample that was not discernable using the radio-TLC scanner. Using the CLI-based readout method, we also observed that high labeling efficiency (99%) of [177Lu]Lu-PSMA-617 can be achieved in just 10 min, rather than the typical 30 min timeframe used. CONCLUSIONS: Cerenkov imaging in combination with parallel developing of multiple samples on a single TLC plate proved to be a practical method for rapid, high-throughput radio-TLC analysis.


Assuntos
Cromatografia em Camada Fina/métodos , Luminescência , Imagem Óptica
12.
Clin Cancer Res ; 26(12): 2946-2955, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-31932492

RESUMO

PURPOSE: Prostate-specific membrane antigen (PSMA) targeting radioligands deliver radiation to PSMA-expressing cells. However, the relationship between PSMA levels and intralesion heterogeneity of PSMA expression, and cytotoxic radiation by radioligand therapy (RLT) is unknown. Here we investigate RLT efficacy as function of PSMA levels/cell, and the fraction of PSMA+ cells in a tumor. EXPERIMENTAL DESIGN: RM1 cells expressing different levels of PSMA (PSMA-, PSMA+, PSMA++, PSMA+++; study 1) or a mix of PSMA+ and PSMA- RM1 (study 2, 4) or PC-3/PC-3-PIP (study 3) cells at various ratios were injected into mice. Mice received 177Lu- (studies 1-3) or 225Ac- (study 4) PSMA617. Tumor growth was monitored. Two days post-RLT, tumors were resected in a subset of mice. Radioligand uptake and DNA damage were quantified. RESULTS: 177Lu-PSMA617 efficacy increased with increasing PSMA levels (study 1) and fractions of PSMA positive cells (studies 2, 3) in both, the RM1 and PC-3-PIP models. In tumors resected 2 days post-RLT, PSMA expression correlated with 177Lu-PSMA617 uptake and the degree of DNA damage. Compared with 177Lu-PSMA617, 225Ac-PSMA617 improved overall antitumor effectiveness and tended to enhance the differences in therapeutic efficacy between experimental groups. CONCLUSIONS: In the current models, both the degree of PSMA expression and the fraction of PSMA+ cells correlate with 177Lu-/225Ac-PSMA617 tumor uptake and DNA damage, and thus, RLT efficacy. Low or heterogeneous PSMA expression represents a resistance mechanism to RLT.See related commentary by Ravi Kumar and Hofman, p. 2774.


Assuntos
Antígenos de Superfície , Antígeno Prostático Específico , Animais , Antígenos de Superfície/metabolismo , Dano ao DNA , Ligantes , Masculino , Camundongos , Antígeno Prostático Específico/metabolismo , Neoplasias da Próstata , Células Tumorais Cultivadas
13.
Mol Imaging Biol ; 22(2): 256-264, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31240531

RESUMO

In light of the United States Food and Drug Administration (FDA) requirement of 21 CFR 212 current Good Manufacturing Practice (cGMP) for FDA-approved position emission tomography (PET) drugs, the University of California Los Angeles (UCLA) Biomedical Cyclotron (BMC) transformed from a pre-cGMP era academic cyclotron and radiochemistry facility to a current cGMP-compliant PET drug manufacturer. In this article, we share the financial and regulatory compliance aspects of the "transformation" required to develop a sustainable quality system to support the production of two PET drugs under Abbreviated New Drug Applications (ANDAs).


Assuntos
Indústria Farmacêutica/normas , Fiscalização e Controle de Instalações/normas , Fidelidade a Diretrizes , Tomografia por Emissão de Pósitrons/normas , Radioquímica/métodos , California , Ciclotrons , Aprovação de Drogas , Humanos , Controle de Qualidade , Compostos Radiofarmacêuticos , Estados Unidos , United States Food and Drug Administration , Universidades
14.
J Nucl Med ; 61(8): 1171-1177, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31836685

RESUMO

Targeting cancer-associated fibroblasts (CAFs) has become an attractive goal for diagnostic imaging and therapy because they can constitute as much as 90% of a tumor mass. The serine protease fibroblast activation protein (FAP) is overexpressed selectively in CAFs, drawing interest in FAP as a stromal target. The quinoline-based FAP inhibitor (FAPI) PET tracer 68Ga-FAPI-04 has been previously shown to yield high tumor-to-background ratios (TBRs) in patients with various cancers. Recent developments toward an improved compound for therapeutic application have identified FAPI-46 as a promising agent because of an increased tumor retention time in comparison with FAPI-04. Here, we present a PET biodistribution and radiation dosimetry study of 68Ga-FAPI-46 in cancer patients. Methods: Six patients with different cancers underwent serial 68Ga-FAPI-46 PET/CT scans at 3 time points after radiotracer injection: 10 min, 1 h, and 3 h. The source organs consisted of the kidneys, bladder, liver, heart, spleen, bone marrow, uterus, and remainder of body. OLINDA/EXM software, version 1.1, was used to fit and integrate the kinetic organ activity data to yield total-body and organ time-integrated activity coefficients and residence times and, finally, organ-absorbed doses. SUVs and TBR were generated from the contoured tumor and source-organ volumes. Spheric volumes in muscle and blood pool were also obtained for TBR (tumor SUVmax/organ SUVmean). Results: At all time points, average SUVmax was highest in the liver. Tumor and organ SUVmean decreased over time, whereas TBRs in all organs but the uterus increased. The organs with the highest effective doses were bladder wall (2.41E-03 mSv/MBq), followed by ovaries (1.15E-03 mSv/MBq) and red marrow (8.49E-04 mSv/MBq). The average effective total-body dose was 7.80E-03 mSv/MBq. Conclusion:68Ga-FAPI-46 PET/CT has a favorable dosimetry profile, with an estimated whole-body dose of 5.3 mSv for an administration of 200 MBq (5.4 mCi) of 68Ga-FAPI-46 (1.56 ± 0.26 mSv from the PET tracer and 3.7 mSv from 1 low-dose CT scan). The biodistribution study showed high TBRs increasing over time, suggesting high diagnostic performance and favorable tracer kinetics for potential therapeutic applications.


Assuntos
Neoplasias/diagnóstico por imagem , Neoplasias/metabolismo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Quinolinas/farmacocinética , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Radiometria , Estudos Retrospectivos , Distribuição Tecidual
15.
Cell Chem Biol ; 27(2): 197-205.e6, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-31734178

RESUMO

Biosynthesis of the pyrimidine nucleotide uridine monophosphate (UMP) is essential for cell proliferation and is achieved by the activity of convergent de novo and salvage metabolic pathways. Here we report the development and application of a cell-based metabolic modifier screening platform that leverages the redundancy in pyrimidine metabolism for the discovery of selective UMP biosynthesis modulators. In evaluating a library of protein kinase inhibitors, we identified multiple compounds that possess nucleotide metabolism modifying activity. The JNK inhibitor JNK-IN-8 was found to potently inhibit nucleoside transport and engage ENT1. The PDK1 inhibitor OSU-03012 (also known as AR-12) and the RAF inhibitor TAK-632 were shown to inhibit the therapeutically relevant de novo pathway enzyme DHODH and their affinities were unambiguously confirmed through in vitro assays and co-crystallization with human DHODH.


Assuntos
Transportador Equilibrativo 1 de Nucleosídeo/antagonistas & inibidores , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/antagonistas & inibidores , Inibidores de Proteínas Quinases/química , Nucleosídeos de Pirimidina/metabolismo , Sítios de Ligação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cristalografia por Raios X , Di-Hidro-Orotato Desidrogenase , Desenho de Fármacos , Transportador Equilibrativo 1 de Nucleosídeo/metabolismo , Humanos , Simulação de Dinâmica Molecular , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Bibliotecas de Moléculas Pequenas/química
16.
RSC Adv ; 10(13): 7828-7838, 2020 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35492189

RESUMO

Microfluidics offers numerous advantages for the synthesis of short-lived radiolabeled imaging tracers: performing 18F-radiosyntheses in microliter-scale droplets has exhibited high efficiency, speed, and molar activity as well as low reagent consumption. However, most reports have been at the preclinical scale. In this study we integrate a [18F]fluoride concentrator and a microdroplet synthesizer to explore the possibility of synthesizing patient doses and multi-patient batches of clinically-acceptable tracers. In the integrated system, [18F]fluoride (up to 41 GBq [1.1 Ci]) in [18O]H2O (1 mL) was first concentrated ∼80-fold and then efficiently transferred to the 8 µL reaction chip as a series of small (∼0.5 µL) droplets. Each droplet rapidly dried at the reaction site of the pre-heated chip, resulting in localized accumulation of large amounts of radioactivity in the form of dried [18F]TBAF complex. The PET tracer [18F]fallypride was synthesized from this concentrated activity in an overall synthesis time of ∼50 min (including radioisotope concentration and transfer, droplet radiosynthesis, purification, and formulation), in amounts up to 7.2 GBq [0.19 Ci], sufficient for multiple clinical PET scans. The resulting batches of [18F]fallypride passed all QC tests needed to ensure safety for clinical injection. This integrated technology enabled for the first time the impact of a wide range of activity levels on droplet radiosynthesis to be studied. Furthermore, this substantial increase in scale expands the applications of droplet radiosynthesis to the production of clinically-relevant amounts of radiopharmaceuticals, and potentially even centralized production of clinical tracers in radiopharmacies. The overall system could be applied to fundamental studies of droplet-based radiochemical reactions, or to the production of radiopharmaceuticals labeled with a variety of isotopes used for imaging and/or targeted radiotherapeutics.

17.
Lancet Oncol ; 20(9): 1286-1294, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31375469

RESUMO

BACKGROUND: National Comprehensive Cancer Network guidelines consider 18F-fluciclovine PET-CT for prostate cancer biochemical recurrence localisation after radical prostatectomy, whereas European Association of Urology guidelines recommend prostate-specific membrane antigen (PSMA) PET-CT. To the best of our knowledge, no prospective head-to-head comparison between these tests has been done so far. The aim of this study was to compare prospectively paired 18F-fluciclovine and PSMA PET-CT scans for localising biochemical recurrence of prostate cancer after radical prostatectomy in patients with low prostate-specific antigen (PSA) concentrations (<2·0 ng/mL). METHODS: This was a prospective, single-centre, open-label, single-arm comparative study done at University of California Los Angeles (Los Angeles, CA, USA). Patients older than 18 years of age with prostate cancer biochemical recurrence after radical prostatectomy and PSA levels ranging from 0·2 to 2·0 ng/mL without any prior salvage therapy and with a Karnofsky performance status of at least 50 were eligible. Patients underwent 18F-fluciclovine (reference test) and PSMA (index test) PET-CT scans within 15 days. Detection rate of biochemical recurrence at the patient level and by anatomical region was the primary endpoint. A statistical power analysis demonstrated that a sample size of 50 patients was needed to show a 22% difference in detection rates in favour of PSMA (test for superiority). Each PET scan was interpreted by three independent masked readers and a consensus majority interpretation was generated (two vs one) to determine positive findings. This study is registered with ClinicalTrials.gov, number NCT02940262, and is complete. FINDINGS: Between Feb 26, 2018, and Sept 20, 2018, 143 patients were screened for eligibility, of whom 50 patients were enrolled into the study. Median follow-up was 8 months (IQR 7-9). The primary endpoint was met; detection rates were significantly lower with 18F-fluciclovine PET-CT (13 [26%; 95% CI 15-40] of 50) than with PSMA PET-CT (28 [56%; 41-70] of 50), with an odds ratio (OR) of 4·8 (95% CI 1·6-19·2; p=0·0026) at the patient level; in the subanalysis of the pelvic nodes region (four [8%; 2-19] with 18F-fluciclovine vs 15 [30%; 18-45] with PSMA PET-CT; OR 12·0 [1·8-513·0], p=0·0034); and in the subanalysis of any extrapelvic lesions (none [0%; 0-6] vs eight [16%; 7-29]; OR non-estimable [95% CI non-estimable], p=0·0078). INTERPRETATION: With higher detection rates, PSMA should be the PET tracer of choice when PET-CT imaging is considered for subsequent treatment management decisions in patients with prostate cancer and biochemical recurrence after radical prostatectomy and low PSA concentrations (≤2·0 ng/mL). Further research is needed to investigate whether higher detection rates translate into improved oncological outcomes. FUNDING: None.


Assuntos
Ácidos Carboxílicos/administração & dosagem , Ciclobutanos/administração & dosagem , Ácido Edético/análogos & derivados , Recidiva Local de Neoplasia/diagnóstico por imagem , Oligopeptídeos/administração & dosagem , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Neoplasias da Próstata/diagnóstico por imagem , Idoso , Meios de Contraste/administração & dosagem , Ácido Edético/administração & dosagem , Isótopos de Gálio , Radioisótopos de Gálio , Humanos , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/sangue , Recidiva Local de Neoplasia/patologia , Recidiva Local de Neoplasia/cirurgia , Estudos Prospectivos , Antígeno Prostático Específico/sangue , Prostatectomia/métodos , Neoplasias da Próstata/sangue , Neoplasias da Próstata/patologia , Neoplasias da Próstata/cirurgia
18.
Theranostics ; 9(5): 1336-1347, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30867834

RESUMO

The trend to inform personalized molecular radiotherapy with molecular imaging diagnostics, a concept referred to as theranostics, has transformed the field of nuclear medicine in recent years. The development of theranostic pairs comprising somatostatin receptor (SSTR)-targeting nuclear imaging probes and therapeutic agents for the treatment of patients with neuroendocrine tumors (NETs) has been a driving force behind this development. With the Neuroendocrine Tumor Therapy (NETTER-1) phase 3 trial reporting encouraging results in the treatment of well-differentiated, metastatic midgut NETs, peptide radioligand therapy (RLT) with the 177Lu-labeled somatostatin analog (SSA) [177Lu]Lu-DOTA-TATE is now anticipated to become the standard of care. On the diagnostics side, the field is currently dominated by 68Ga-labeled SSAs for the molecular imaging of NETs with positron emission tomography-computed tomography (PET/CT). PET/CT imaging with SSAs such as [68Ga]Ga-DOTA-TATE, [68Ga]Ga-DOTA-TOC, and [68Ga]Ga-DOTA-NOC allows for NET staging with high accuracy and is used to qualify patients for RLT. Driven by the demand for PET/CT imaging of NETs, a commercial kit for the production of [68Ga]Ga-DOTA-TATE (NETSPOT) was approved by the U.S. Food and Drug Administration (FDA). The synthesis of 68Ga-labeled SSAs from a 68Ge/68Ga-generator is straightforward and allows for a decentralized production, but there are economic and logistic difficulties associated with these approaches that warrant the search for a viable, generator-independent alternative. The clinical introduction of an 18F-labeled SSTR-imaging probe can help mitigate the shortcomings of the generator-based synthesis approach, but despite extensive research efforts, none of the proposed 18F-labeled SSAs has been translated past prospective first-in-humans studies so far. Here, we review the current state of probe-development from a translational viewpoint and make a case for a clinically viable, 18F-labeled alternative to the current standard [68Ga]Ga-DOTA-TATE.


Assuntos
Antineoplásicos/administração & dosagem , Radioisótopos de Flúor/administração & dosagem , Tumores Neuroendócrinos/diagnóstico , Tumores Neuroendócrinos/terapia , Somatostatina/análogos & derivados , Somatostatina/administração & dosagem , Nanomedicina Teranóstica/métodos , Pesquisa Biomédica/tendências , Hormônios/administração & dosagem , Humanos , Imagem Molecular/métodos , Terapia de Alvo Molecular/métodos , Estudos Prospectivos
19.
JAMA Oncol ; 5(6): 856-863, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30920593

RESUMO

IMPORTANCE: In retrospective studies, 68Ga-PSMA-11 positron emission tomographic (PET) imaging improves detection of biochemically recurrent prostate cancer compared with conventional imaging. OBJECTIVE: To assess 68Ga-PSMA-11 PET accuracy in a prospective multicenter trial. DESIGN, SETTING, AND PARTICIPANTS: In this single-arm prospective trial conducted at University of California, San Francisco and University of California, Los Angeles, 635 patients with biochemically recurrent prostate cancer after prostatectomy (n = 262, 41%), radiation therapy (n = 169, 27%), or both (n = 204, 32%) underwent 68Ga-PSMA-11 PET. Presence of prostate cancer was recorded by 3 blinded readers on a per-patient and per-region base. Lesions were validated by histopathologic analysis and a composite reference standard. MAIN OUTCOMES AND MEASURES: Endpoints were positive predictive value (PPV), detection rate, interreader reproducibility, and safety. RESULTS: A total of 635 men were enrolled with a median age of 69 years (range, 44-95 years). On a per-patient basis, PPV was 0.84 (95% CI, 0.75-0.90) by histopathologic validation (primary endpoint, n = 87) and 0.92 (95% CI, 0.88-0.95) by the composite reference standard (n = 217). 68Ga-PSMA-11 PET localized recurrent prostate cancer in 475 of 635 (75%) patients; detection rates significantly increased with prostate-specific antigen (PSA): 38% for <0.5 ng/mL (n = 136), 57% for 0.5 to <1.0 ng/mL (n = 79), 84% for 1.0 to <2.0 ng/mL (n = 89), 86% for 2.0 to <5.0 ng/mL (n = 158), and 97% for ≥5.0 ng/mL (n = 173, P < .001). Interreader reproducibility was substantial (Fleiss κ, 0.65-0.78). There were no serious adverse events associated with 68Ga-PSMA-11 administration. PET-directed focal therapy alone led to a PSA drop of 50% or more in 31 of 39 (80%) patients. CONCLUSIONS AND RELEVANCE: Using blinded reads and independent lesion validation, we establish high PPV for 68Ga-PSMA-11 PET, detection rate and interreader agreement for localization of recurrent prostate cancer. TRIAL REGISTRATION: ClinicalTrials.gov identifiers: NCT02940262 and NCT03353740.


Assuntos
Ácido Edético/análogos & derivados , Recidiva Local de Neoplasia/diagnóstico por imagem , Oligopeptídeos/uso terapêutico , Tomografia por Emissão de Pósitrons , Neoplasias da Próstata/diagnóstico por imagem , Compostos Radiofarmacêuticos/uso terapêutico , Adulto , Idoso , Idoso de 80 Anos ou mais , Ácido Edético/uso terapêutico , Isótopos de Gálio , Radioisótopos de Gálio , Humanos , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/terapia , Valor Preditivo dos Testes , Antígeno Prostático Específico , Neoplasias da Próstata/terapia
20.
J Vis Exp ; (140)2018 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-30417868

RESUMO

The development of new positron-emission tomography (PET) tracers is enabling researchers and clinicians to image an increasingly wide array of biological targets and processes. However, the increasing number of different tracers creates challenges for their production at radiopharmacies. While historically it has been practical to dedicate a custom-configured radiosynthesizer and hot cell for the repeated production of each individual tracer, it is becoming necessary to change this workflow. Recent commercial radiosynthesizers based on disposable cassettes/kits for each tracer simplify the production of multiple tracers with one set of equipment by eliminating the need for custom tracer-specific modifications. Furthermore, some of these radiosynthesizers enable the operator to develop and optimize their own synthesis protocols in addition to purchasing commercially-available kits. In this protocol, we describe the general procedure for how the manual synthesis of a new PET tracer can be automated on one of these radiosynthesizers and validated for the production of clinical-grade tracers. As an example, we use the ELIXYS radiosynthesizer, a flexible cassette-based radiochemistry tool that can support both PET tracer development efforts, as well as routine clinical probe manufacturing on the same system, to produce [18F]Clofarabine ([18F]CFA), a PET tracer to measure in vivo deoxycytidine kinase (dCK) enzyme activity. Translating a manual synthesis involves breaking down the synthetic protocol into basic radiochemistry processes that are then translated into intuitive chemistry "unit operations" supported by the synthesizer software. These operations can then rapidly be converted into an automated synthesis program by assembling them using the drag-and-drop interface. After basic testing, the synthesis and purification procedure may require optimization to achieve the desired yield and purity. Once the desired performance is achieved, a validation of the synthesis is carried out to determine its suitability for the production of the radiotracer for clinical use.


Assuntos
Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/síntese química , Automação , Humanos , Radioquímica , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA