RESUMO
Screening for chitinolytic activity in the bacterial strains from different Pacific Ocean regions revealed that the highly active representatives belong to the genera Microbulbifer, Vibrio, Aquimarina, and Pseudoalteromonas. The widely distributed chitinolytic species was Microbulbifer isolated from the sea urchin Strongylocentrotus intermedius. Among seventeen isolates with confirmed chitinolytic activity, only the type strain P. flavipulchra KMM 3630T and the strains of putatively new species Pseudoalteromonas sp. B530 and Vibrio sp. Sgm 5, isolated from sea water (Vietnam mollusc farm) and the sea urchin S. intermedius (Peter the Great Gulf, the Sea of Japan), significantly suppressed the hyphal growth of Aspergillus niger that is perspective for the biocontrol agents' development. The results on chitinolytic activities and whole-genome sequencing of the strains under study, including agarolytic type strain Z. galactanivorans DjiT, found the new functionally active chitinase structures and biotechnological potential.
RESUMO
The B12-producing strains Pseudomonas nitroreducens DSM 1650 and Pseudomonas sp. CCUG 2519 (both formerly Pseudomonas denitrificans), with the most distributed pathway among bacteria for exogenous choline/betaine utilization, are promising recombinant hosts for the endogenous production of B12 precursor betaine by direct methylation of bioavailable glycine or non-proteinogenic ß-alanine. Two plasmid-based de novo betaine pathways, distinguished by their enzymes, have provided an expression of the genes encoding for N-methyltransferases of the halotolerant cyanobacterium Aphanothece halophytica or plant Limonium latifolium to synthesize the internal glycine betaine or ß-alanine betaine, respectively. These betaines equally allowed the recombinant pseudomonads to grow effectively and to synthesize a high level of cobalamin, as well as to increase their protective properties against abiotic stresses to a degree comparable with the supplementation of an exogenous betaine. Both de novo betaine pathways significantly enforced the protection of bacterial cells against lowering temperature to 15 °C and increasing salinity to 400 mM of NaCl. However, the expression of the single plant-derived gene for the ß-alanine-specific N-methyltransferase additionally increased the effectiveness of exogenous glycine betaine almost twofold on cobalamin biosynthesis, probably due to the Pseudomonas' ability to use two independent pathways, their own choline/betaine pathway and the plant ß-alanine betaine biosynthetic pathway.
Assuntos
Betaína , Colina , Betaína/metabolismo , Pseudomonas/genética , Pseudomonas/metabolismo , Estresse Fisiológico/genética , Metiltransferases/metabolismo , beta-Alanina , Vitamina B 12RESUMO
An efficient Agrobacterium-mediated genetic transformation based on the plant binary vector pPZP-RCS2 was carried out for the multiple heterologous protein production in filamentous fungus Thermothelomyces thermophilus F-859 (formerly Myceliophthora thermophila F-859). The engineered fungus Th. thermophilus was able to produce plant storage proteins of Zea mays (α-zein Z19) and Amaranthus hypochondriacus (albumin A1) to enrich fungal biomass by valuable nutritional proteins and improved amino acid content. The mRNA levels of z19 and a1 genes were significantly dependent on their driving promoters: the promoter of tryptophan synthase (PtrpC) was more efficient to express a1, while the promoter of translation elongation factor (Ptef) provided much higher levels of z19 transcript abundance. In general, the total recombinant proteins and amino acid contents were higher in the Ptef-containing clones. This work describes a new strategy to improve mycoprotein nutritive value by overexpression of plant storage proteins.
RESUMO
During a search for glycosidase inhibitors among marine natural products, we applied an integrated in vitro and in silico approach to evaluate the potency of some aaptamines and makaluvamines isolated from marine sponges on the hydrolyzing activity of α-N-acetylgalactosaminidase (α-NaGalase) from human cancer cells and the recombinant α-D-galactosidase (α-PsGal) from a marine bacterium Pseudoalteromonas sp. KMM 701. These alkaloids showed no direct inhibitory effect on the cancer α-NaGalase; but isoaaptamine (2), 9-demethylaaptamine (3), damirone B (6), and makaluvamine H (7) reduced the expression of the enzyme in the human colorectal adenocarcinoma cell line DLD-1 at 5 µM. Isoaaptamine (2), 9-demethylaaptamine (3), makaluvamine G (6), and zyzzyanone A (7) are slow-binding irreversible inhibitors of the bacterial α-PsGal with the inactivation rate constants (kinact) 0.12 min-1, 0.092 min-1, 0.079 min-1, and 0.037 min-1, as well as equilibrium inhibition constants (Ki) 2.70 µM, 300 µM, 411 µM, and 105 µM, respectively. Docking analysis revealed that these alkaloids bind in a pocket close to the catalytic amino acid residues Asp451 and Asp516 and form complexes, due to π-π interactions with the Trp308 residue and hydrogen bonds with the Lys449 residue. None of the studied alkaloids formed complexes with the active site of the human α-NaGalase.
RESUMO
The biofilm-producing strains of P. aeruginosa colonize various surfaces, including food products and industry equipment that can cause serious human and animal health problems. The biofilms enable microorganisms to evolve the resistance to antibiotics and disinfectants. Analysis of the P. aeruginosa strain (serotype O6, sequence type 2502), isolated from an environment of meat processing (PAEM) during a ready-to-cook product storage (-20 °C), showed both the mosaic similarity and differences between free-living and clinical strains by their coding DNA sequences. Therefore, a cold shock protein (CspA) has been suggested for consideration of the evolution probability of the cold-adapted P. aeruginosa strains. In addition, the study of the action of cold-active enzymes from marine bacteria against the food-derived pathogen could contribute to the methods for controlling P. aeruginosa biofilms. The genes responsible for bacterial biofilm regulation are predominantly controlled by quorum sensing, and they directly or indirectly participate in the synthesis of extracellular polysaccharides, which are the main element of the intercellular matrix. The levels of expression for 14 biofilm-associated genes of the food-derived P. aeruginosa strain PAEM in the presence of different concentrations of the glycoside hydrolase of family 36, α-galactosidase α-PsGal, from the marine bacterium Pseudoalteromonas sp. KMM 701 were determined. The real-time PCR data clustered these genes into five groups according to the pattern of positive or negative regulation of their expression in response to the action of α-galactosidase. The results revealed a dose-dependent mechanism of the enzymatic effect on the PAEM biofilm synthesis and dispersal genes.
Assuntos
Biofilmes , Microbiologia de Alimentos , Genes Bacterianos , Pseudomonas aeruginosa/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas e Peptídeos de Choque Frio/genética , Proteínas e Peptídeos de Choque Frio/metabolismo , Produtos da Carne/microbiologia , Pseudomonas aeruginosa/isolamento & purificação , Pseudomonas aeruginosa/fisiologia , Percepção de Quorum , alfa-Galactosidase/genética , alfa-Galactosidase/metabolismoRESUMO
The effect of monanchomycalin B, monanhocicidin A, and normonanhocidin A isolated from the Northwest Pacific sample of the sponge Monanchora pulchra was investigated on the activity of α-galactosidase from the marine γ-proteobacterium Pseudoalteromonas sp. KMM 701 (α-PsGal), and α-N-acetylgalactosaminidase from the marine bacterium Arenibacter latericius KMM 426T (α-NaGa). All compounds are slow-binding irreversible inhibitors of α-PsGal, but have no effect on α-NaGa. A competitive inhibitor d-galactose protects α-PsGal against the inactivation. The inactivation rate (kinact) and equilibrium inhibition (Ki) constants of monanchomycalin B, monanchocidin A, and normonanchocidin A were 0.166 ± 0.029 min-1 and 7.70 ± 0.62 µM, 0.08 ± 0.003 min-1 and 15.08 ± 1.60 µM, 0.026 ± 0.000 min-1, and 4.15 ± 0.01 µM, respectively. The 2D-diagrams of α-PsGal complexes with the guanidine alkaloids were constructed with "vessel" and "anchor" parts of the compounds. Two alkaloid binding sites on the molecule of α-PsGal are shown. Carboxyl groups of the catalytic residues Asp451 and Asp516 of the α-PsGal active site interact with amino groups of "anchor" parts of the guanidine alkaloid molecules.
Assuntos
Alcaloides/farmacologia , Glicosídeo Hidrolases/metabolismo , Guanidina/análogos & derivados , Guanidinas/farmacologia , Poríferos/metabolismo , Pseudoalteromonas/efeitos dos fármacos , Animais , Guanidina/metabolismoRESUMO
An ability to synthesize extracellular enzymes degrading a wide spectrum of plant and algae polymeric substrates makes many fungi relevant for biotechnology. The terrestrial thermophilic and marine fungal isolates capable of plant and algae degradation have been tested for antibiotic resistance for their possible use in a new genetic transformation system. Plasmids encoding the hygromycin B phosphotransferase (hph) under the control of the cauliflower mosaic virus 35S promoter, the trpC gene promoter of Aspergillus nidulans, and the Aureobasidium pullulans TEF gene promoter were delivered into the fungal cells by electroporation. The effectiveness of different promoters was compared by transformation and growth of Thermothelomyces thermophila (formerly Myceliophthora thermophila) on the selective medium and by real-time PCR analysis. A highly efficient transformation was observed at an electric-pulse of 8.5â¯kV/cm by using 10⯵g of DNA per 1â¯×â¯105 conidia. Although all promoters were capable of hph expression in the Th. thermophila cells, the trpC promoter provided the highest level of hygromycin resistance. We further successfully applied plant binary vector pPZP for co-transformation of hph gene and enhanced green fluorescent protein gene that confirmed this transformation system could be used as an appropriate tool for gene function studies and the expression of heterologous proteins in micromycetes.
Assuntos
Organismos Aquáticos/genética , Plasmídeos/metabolismo , Saccharomycetales/genética , Esporos Fúngicos/genética , Transformação Genética , Organismos Aquáticos/classificação , Organismos Aquáticos/efeitos dos fármacos , Organismos Aquáticos/metabolismo , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Caulimovirus/genética , Caulimovirus/metabolismo , Cinamatos/farmacologia , Eletroporação/métodos , Temperatura Alta , Higromicina B/análogos & derivados , Higromicina B/farmacologia , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Filogenia , Plasmídeos/química , Regiões Promotoras Genéticas , Federação Russa , Saccharomycetales/classificação , Saccharomycetales/efeitos dos fármacos , Saccharomycetales/metabolismo , Água do Mar/microbiologia , Esporos Fúngicos/efeitos dos fármacos , Esporos Fúngicos/metabolismoRESUMO
A novel wild-type recombinant cold-active α-d-galactosidase (α-PsGal) from the cold-adapted marine bacterium Pseudoalteromonas sp. KMM 701, and its mutants D451A and C494N, were studied in terms of their structural, physicochemical, and catalytic properties. Homology models of the three-dimensional α-PsGal structure, its active center, and complexes with D-galactose were constructed for identification of functionally important amino acid residues in the active site of the enzyme, using the crystal structure of the α-galactosidase from Lactobacillus acidophilus as a template. The circular dichroism spectra of the wild α-PsGal and mutant C494N were approximately identical. The C494N mutation decreased the efficiency of retaining the affinity of the enzyme to standard p-nitrophenyl-α-galactopiranoside (pNP-α-Gal). Thin-layer chromatography, matrix-assisted laser desorption/ionization mass spectrometry, and nuclear magnetic resonance spectroscopy methods were used to identify transglycosylation products in reaction mixtures. α-PsGal possessed a narrow acceptor specificity. Fructose, xylose, fucose, and glucose were inactive as acceptors in the transglycosylation reaction. α-PsGal synthesized -α(1â6)- and -α(1â4)-linked galactobiosides from melibiose as well as -α(1â6)- and -α(1â3)-linked p-nitrophenyl-digalactosides (Gal2-pNP) from pNP-α-Gal. The D451A mutation in the active center completely inactivated the enzyme. However, the substitution of C494N discontinued the Gal-α(1â3)-Gal-pNP synthesis and increased the Gal-α(1â4)-Gal yield compared to Gal-α(1â6)-Gal-pNP.
Assuntos
Proteínas de Bactérias/metabolismo , Modelos Químicos , Pseudoalteromonas/metabolismo , alfa-Galactosidase/metabolismo , Aclimatação , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Temperatura Baixa , Ensaios Enzimáticos , Glicosilação , Mutagênese Sítio-Dirigida , Mutação , Pseudoalteromonas/genética , Pseudoalteromonas/fisiologia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , alfa-Galactosidase/química , alfa-Galactosidase/genética , alfa-Galactosidase/isolamento & purificaçãoRESUMO
Filamentous fungi possess the metabolic capacity to degrade environment organic matter, much of which is the plant and algae material enriched with the cell wall carbohydrates and polyphenol complexes that frequently can be assimilated by only marine fungi. As the most renewable energy feedstock on the Earth, the plant or algae polymeric substrates induce an expression of microbial extracellular enzymes that catalyze their cleaving up to the component sugars. However, the question of what the marine fungi contributes to the plant and algae material biotransformation processes has yet to be highlighted sufficiently. In this review, we summarized the potential of marine fungi alternatively to terrestrial fungi to produce the biotechnologically valuable extracellular enzymes in response to the plant and macroalgae polymeric substrates as sources of carbon for their bioconversion used for industries and bioremediation.
RESUMO
Data is presented in support of functionality of hyper-diverse protein families encoded by the Cobetia amphilecti KMM 296 (formerly Cobetia marina KMM 296) genome ("The genome of the marine bacterium Cobetia marina KMM 296 isolated from the mussel Crenomytilus grayanus (Dunker, 1853)" [1]) providing its nutritional versatility, adaptability and biocontrol that could be the basis of the marine bacterium evolutionary and application potential. Presented data include the information of growth and biofilm-forming properties of the food-associated isolates of Pseudomonas, Bacillus, Listeria, Salmonella and Staphylococcus under the conditions of their co-culturing with C. amphilecti KMM 296 to confirm its high inter-species communication and anti-microbial activity. Also included are the experiments on the crude petroleum consumption by C. amphilecti KMM 296 as the sole source of carbon in the presence of sulfate or nitrate to ensure its bioremediation capacity. The multifunctional C. amphilecti KMM 296 genome is a promising source for the beneficial psychrophilic enzymes and essential secondary metabolites.