Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(2)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38255763

RESUMO

Defects in the low-density lipoprotein receptor (LDLR) are associated with familial hypercholesterolemia (FH), manifested by atherosclerosis and cardiovascular disease. LDLR deficiency in hepatocytes leads to elevated blood cholesterol levels, which damage vascular cells, especially endothelial cells, through oxidative stress and inflammation. However, the distinctions between endothelial cells from individuals with normal and defective LDLR are not yet fully understood. In this study, we obtained and examined endothelial derivatives of induced pluripotent stem cells (iPSCs) generated previously from conditionally healthy donors and compound heterozygous FH patients carrying pathogenic LDLR alleles. In normal iPSC-derived endothelial cells (iPSC-ECs), we detected the LDLR protein predominantly in its mature form, whereas iPSC-ECs from FH patients have reduced levels of mature LDLR and show abolished low-density lipoprotein uptake. RNA-seq of mutant LDLR iPSC-ECs revealed a unique transcriptome profile with downregulated genes related to monocarboxylic acid transport, exocytosis, and cell adhesion, whereas upregulated signaling pathways were involved in cell secretion and leukocyte activation. Overall, these findings suggest that LDLR defects increase the susceptibility of endothelial cells to inflammation and oxidative stress. In combination with elevated extrinsic cholesterol levels, this may result in accelerated endothelial dysfunction, contributing to early progression of atherosclerosis and other cardiovascular pathologies associated with FH.


Assuntos
Aterosclerose , Hipercolesterolemia , Hiperlipoproteinemia Tipo II , Células-Tronco Pluripotentes Induzidas , Humanos , Aterosclerose/genética , Colesterol , Células Endoteliais , Hiperlipoproteinemia Tipo II/genética , Inflamação/genética , Lipoproteínas LDL , Transcriptoma
2.
Int J Mol Sci ; 24(5)2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36901902

RESUMO

The LDLR locus has clinical significance for lipid metabolism, Mendelian familial hypercholesterolemia (FH), and common lipid metabolism-related diseases (coronary artery disease and Alzheimer's disease), but its intronic and structural variants are underinvestigated. The aim of this study was to design and validate a method for nearly complete sequencing of the LDLR gene using long-read Oxford Nanopore sequencing technology (ONT). Five PCR amplicons from LDLR of three patients with compound heterozygous FH were analyzed. We used standard workflows of EPI2ME Labs for variant calling. All rare missense and small deletion variants detected previously by massively parallel sequencing and Sanger sequencing were identified using ONT. One patient had a 6976 bp deletion (exons 15 and 16) that was detected by ONT with precisely located breakpoints between AluY and AluSx1. Trans-heterozygous associations between mutation c.530C>T and c.1054T>C, c.2141-966_2390-330del, and c.1327T>C, and between mutations c.1246C>T and c.940+3_940+6del of LDLR, were confirmed. We demonstrated the ability of ONT to phase variants, thereby enabling haplotype assignment for LDLR with personalized resolution. The ONT-based method was able to detect exonic variants with the additional benefit of intronic analysis in one run. This method can serve as an efficient and cost-effective tool for diagnosing FH and conducting research on extended LDLR haplotype reconstruction.


Assuntos
Hiperlipoproteinemia Tipo II , Nanoporos , Humanos , Nucleotídeos , Fenótipo , Mutação , Hiperlipoproteinemia Tipo II/genética , Receptores de LDL/metabolismo
3.
Int J Mol Sci ; 23(24)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36555486

RESUMO

Increasing evidence suggests that both coding and non-coding regions of sarcomeric protein genes can contribute to hypertrophic cardiomyopathy (HCM). Here, we introduce an experimental workflow (tested on four patients) for complete sequencing of the most common HCM genes (MYBPC3, MYH7, TPM1, TNNT2, and TNNI3) via long-range PCR, Oxford Nanopore Technology (ONT) sequencing, and bioinformatic analysis. We applied Illumina and Sanger sequencing to validate the results, FastQC, Qualimap, and MultiQC for quality evaluations, MiniMap2 to align data, Clair3 to call and phase variants, and Annovar's tools and CADD to assess pathogenicity of variants. We could not amplify the region encompassing exons 6-12 of MYBPC3. A higher sequencing error rate was observed with ONT (6.86-6.92%) than with Illumina technology (1.14-1.35%), mostly for small indels. Pathogenic variant p.Gln1233Ter and benign polymorphism p.Arg326Gln in MYBPC3 in a heterozygous state were found in one patient. We demonstrated the ability of ONT to phase single-nucleotide variants, enabling direct haplotype determination for genes TNNT2 and TPM1. These findings highlight the importance of long-range PCR efficiency, as well as lower accuracy of variant calling by ONT than by Illumina technology; these differences should be clarified prior to clinical application of the ONT method.


Assuntos
Cardiomiopatia Hipertrófica , Sequenciamento por Nanoporos , Humanos , Proteínas de Transporte/genética , Mutação , Cardiomiopatia Hipertrófica/genética , Troponina T/genética
4.
Int J Mol Sci ; 23(16)2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-36012502

RESUMO

Meier−Gorlin syndrome (MGS) is a rare genetic developmental disorder that causes primordial proportional dwarfism, microtia, the absence of or hypoplastic patellae and other skeletal anomalies. Skeletal symptoms overlapping with other syndromes make MGS difficult to diagnose clinically. We describe a 3-year-old boy with short stature, recurrent respiratory infections, short-rib dysplasia, tower head and facial dysmorphisms who was admitted to the Tomsk Genetic Clinic to verify a clinical diagnosis of Jeune syndrome. Clinical exome sequencing revealed two variants (compound heterozygosity) in the ORC6 gene: c.2T>C(p.Met1Thr) and c.449+5G>A. In silico analysis showed the pathogenicity of these two mutations and predicted a decrease in donor splicing site strength for c.449+5G>A. An in vitro minigene assay indicated that variant c.449+5G>A causes complete skipping of exon 4 in the ORC6 gene. The parents requested urgent prenatal testing for MGS for the next pregnancy, but it ended in a miscarriage. Our results may help prevent MGS misdiagnosis in the future. We also performed in silico and functional analyses of ORC6 mutations and developed a restriction fragment length polymorphism and haplotype-based short-tandem-repeat assay for prenatal genetic testing for MGS. These findings should elucidate MGS etiology and improve the quality of genetic counselling for affected families.


Assuntos
Microtia Congênita , Nanismo , Pré-Escolar , Microtia Congênita/diagnóstico , Microtia Congênita/genética , Erros de Diagnóstico , Nanismo/genética , Testes Genéticos , Transtornos do Crescimento , Humanos , Masculino , Micrognatismo , Mutação , Complexo de Reconhecimento de Origem/genética , Patela/anormalidades
5.
Stem Cell Res ; 60: 102702, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35152178

RESUMO

The development of cellular models for familial hypercholesterolemia (FH) is an important direction for creating new approaches to atherosclerosis treatment. Pathogenic mutations in the LDLR gene are the main FH source. We generated an iPSC line from peripheral blood mononuclear cells of the patient with compound heterozygous c.1246C > T/c.940 + 3_940 + 6del LDLR mutation. The resulting iPSC line with confirmed patient-specific mutations maintains a normal karyotype and a typical undifferentiated state, including morphology, pluripotent gene expression, and in vitro differentiation potential. This iPSC line can be further differentiated toward relevant cells to better understand FH pathogenesis.


Assuntos
Hiperlipoproteinemia Tipo II , Células-Tronco Pluripotentes Induzidas , Humanos , Hiperlipoproteinemia Tipo II/genética , Hiperlipoproteinemia Tipo II/metabolismo , Hiperlipoproteinemia Tipo II/patologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Leucócitos Mononucleares/metabolismo , Mutação/genética , Receptores de LDL/genética , Receptores de LDL/metabolismo
6.
Stem Cell Res ; 60: 102703, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35152179

RESUMO

Familial hypercholesterolemia (FH) is an autosomal dominant disorder increasing premature cardiovascular diseases risk due to atherosclerosis. Pathogenic mutations in the LDLR gene cause most FH cases. Available treatments are effective not for all LDLR mutations. Testing drugs on FH cell models help develop new efficient treatments. We obtained an iPSC line from peripheral blood mononuclear cells of the patient with heterozygous p.Trp443Arg LDLR mutation. The iPSCs with confirmed patient-specific mutations express pluripotency markers, spontaneously differentiate into three germ layers and demonstrate normal karyotype. Patient-specific iPSCs-derived hepatocyte-like and endothelial cells are promising to develop new targeted therapies for FH.


Assuntos
Hiperlipoproteinemia Tipo II , Células-Tronco Pluripotentes Induzidas , Células Endoteliais/metabolismo , Humanos , Hiperlipoproteinemia Tipo II/genética , Hiperlipoproteinemia Tipo II/patologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Leucócitos Mononucleares/metabolismo , Mutação/genética , Receptores de LDL/genética , Receptores de LDL/metabolismo
7.
Stem Cell Res ; 59: 102653, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34999421

RESUMO

Familial hypercholesterolemia (FH) is a monogenic disease, leading to atherosclerosis due to a high level of low-density lipoprotein cholesterol. Most cases of the disease are based on pathological variants in the LDLR gene. Hepatocyte-like and endothelial cells derived from individual iPSCs are a good model for developing new approaches to therapy. We obtained an iPSC line from peripheral blood mononuclear cells of the patient with compound heterozygous p.Ser177Leu/p.Cys352Arg mutation in LDLR using non-integrating vectors. The iPSCs with a confirmed patient-specific mutation demonstrate pluripotency markers, normal karyotype, and the ability to differentiate into derivatives of three germ layers.

8.
Oncotarget ; 8(37): 61163-61180, 2017 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-28977854

RESUMO

Intratumor morphological heterogeneity in breast cancer is represented by different morphological structures (tubular, alveolar, solid, trabecular, and discrete) and contributes to poor prognosis; however, the mechanisms involved remain unclear. In this study, we performed 3D imaging, laser microdissection-assisted array comparative genomic hybridization and gene expression microarray analysis of different morphological structures and examined their association with the standard immunohistochemistry scorings and CD44+CD24- cancer stem cells. We found that the intratumor morphological heterogeneity is not associated with chromosomal aberrations. By contrast, morphological structures were characterized by specific gene expression profiles and signaling pathways and significantly differed in progesterone receptor and Ki-67 expression. Most importantly, we observed significant differences between structures in the number of expressed genes of the epithelial and mesenchymal phenotypes and the association with cancer invasion pathways. Tubular (tube-shaped) and alveolar (spheroid-shaped) structures were transcriptionally similar and demonstrated co-expression of epithelial and mesenchymal markers. Solid (large shapeless) structures retained epithelial features but demonstrated an increase in mesenchymal traits and collective cell migration hallmarks. Mesenchymal genes and cancer invasion pathways, as well as Ki-67 expression, were enriched in trabecular (one/two rows of tumor cells) and discrete groups (single cells and/or arrangements of 2-5 cells). Surprisingly, the number of CD44+CD24- cells was found to be the lowest in discrete groups and the highest in alveolar and solid structures. Overall, our findings indicate the association of intratumor morphological heterogeneity in breast cancer with the epithelial-mesenchymal transition and CD44+CD24- stemness and the appeal of this heterogeneity as a model for the study of cancer invasion.

9.
Sci Rep ; 7: 41268, 2017 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-28120895

RESUMO

The objective of this study was to identify genes targeted by both copy number and copy-neutral changes in the right coronary arteries in the area of advanced atherosclerotic plaques and intact internal mammary arteries derived from the same individuals with comorbid coronary artery disease and metabolic syndrome. The artery samples from 10 patients were screened for genomic imbalances using array comparative genomic hybridization. Ninety high-confidence, identical copy number variations (CNVs) were detected. We also identified eight copy-neutral changes (cn-LOHs) > 1.5 Mb in paired arterial samples in 4 of 10 individuals. The frequencies of the two gains located in the 10q24.31 (ERLIN1) and 12q24.11 (UNG, ACACB) genomic regions were evaluated in 33 paired arteries and blood samples. Two patients contained the gain in 10q24.31 (ERLIN1) and one patient contained the gain in 12q24.11 (UNG, ACACB) that affected only the blood DNA. An additional two patients harboured these CNVs in both the arteries and blood. In conclusion, we discovered and confirmed a gain of the 10q24.31 (ERLIN1) and 12q24.11 (UNG, ACACB) genomic regions in patients with coronary artery disease and metabolic comorbidity. Analysis of DNA extracted from blood indicated a possible somatic origin for these CNVs.


Assuntos
Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/genética , Genômica , Síndrome Metabólica/epidemiologia , Síndrome Metabólica/genética , Comorbidade , Hibridização Genômica Comparativa , Doença da Artéria Coronariana/genética , Variações do Número de Cópias de DNA/genética , Humanos , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase em Tempo Real
10.
PLoS One ; 10(4): e0122601, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25856389

RESUMO

Epigenetic mechanisms of gene regulation in context of cardiovascular diseases are of considerable interest. So far, our current knowledge of the DNA methylation profiles for atherosclerosis affected and healthy human vascular tissues is still limited. Using the Illumina Infinium Human Methylation27 BeadChip, we performed a genome-wide analysis of DNA methylation in right coronary artery in the area of advanced atherosclerotic plaques, atherosclerotic-resistant internal mammary arteries, and great saphenous veins obtained from same patients with coronary heart disease. The resulting DNA methylation patterns were markedly different between all the vascular tissues. The genes hypomethylated in athero-prone arteries to compare with atherosclerotic-resistant arteries were predominately involved in regulation of inflammation and immune processes, as well as development. The great saphenous veins exhibited an increase of the DNA methylation age in comparison to the internal mammary arteries. Gene ontology analysis for genes harboring hypermethylated CpG-sites in veins revealed the enrichment for biological processes associated with the development. Four CpG-sites located within the MIR10B gene sequence and about 1 kb upstream of the HOXD4 gene were also confirmed as hypomethylated in the independent dataset of the right coronary arteries in the area of advanced atherosclerotic plaques in comparison with the other vascular tissues. The DNA methylation differences observed in vascular tissues of patients with coronary heart disease can provide new insights into the mechanisms underlying the development of pathology and explanation for the difference in graft patency after coronary artery bypass grafting surgery.


Assuntos
Aterosclerose/genética , Doença das Coronárias/genética , Vasos Coronários/metabolismo , Epigênese Genética , Artéria Torácica Interna/metabolismo , Placa Aterosclerótica/genética , Veia Safena/metabolismo , Idoso , Aterosclerose/metabolismo , Aterosclerose/patologia , Doença das Coronárias/metabolismo , Doença das Coronárias/patologia , Vasos Coronários/patologia , Ilhas de CpG , Metilação de DNA , Feminino , Estudo de Associação Genômica Ampla , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Masculino , Artéria Torácica Interna/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Anotação de Sequência Molecular , Especificidade de Órgãos , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia , Veia Safena/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA