Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 17(9): e0273518, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36126055

RESUMO

The histone deacetylase (HDAC) inhibitor vorinostat, used with gemcitabine and other therapies, has been effective in treatment of experimental models of pancreatic cancer. In this study, we demonstrated that M344, an HDAC inhibitor, is efficacious against pancreatic cancer in vitro and in vivo, alone or with gemcitabine. By 24 hours post-treatment, M344 augments the population of pancreatic cancer cells in G1, and at a later time point (48 hours) it increases apoptosis. M344 inhibits histone H3 deacetylation and slows pancreatic cancer cell proliferation better than vorinostat, and it does not decrease the viability of a non-malignant cell line more than vorinostat. M344 also elevates pancreatic cancer cell major histocompatibility complex (MHC) class I molecule expression, potentially increasing the susceptibility of pancreatic cancer cells to T cell lysis. Taken together, our findings support further investigation of M344 as a pancreatic cancer treatment.


Assuntos
Inibidores de Histona Desacetilases , Neoplasias Pancreáticas , Linhagem Celular Tumoral , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Histona Desacetilases/metabolismo , Histonas/metabolismo , Humanos , Ácidos Hidroxâmicos/farmacologia , Ácidos Hidroxâmicos/uso terapêutico , Neoplasias Pancreáticas/tratamento farmacológico , Vorinostat/farmacologia , Neoplasias Pancreáticas
2.
Vaccines (Basel) ; 9(6)2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34200702

RESUMO

Tumors are composed of not only epithelial cells but also many other cell types that contribute to the tumor microenvironment (TME). Within this space, cancer-associated fibroblasts (CAFs) are a prominent cell type, and these cells are connected to an increase in tumor progression as well as alteration of the immune landscape present in and around the tumor. This is accomplished in part by their ability to alter the presence of both innate and adaptive immune cells as well as the release of various chemokines and cytokines, together leading to a more immunosuppressive TME. Furthermore, new research implicates CAFs as players in immunotherapy response in many different tumor types, typically by blunting their efficacy. Fibroblast activation protein (FAP) and transforming growth factor ß (TGF-ß), two major CAF proteins, are associated with the outcome of different immunotherapies and, additionally, have become new targets themselves for immune-based strategies directed at CAFs. This review will focus on CAFs and how they alter the immune landscape within tumors, how this affects response to current immunotherapy treatments, and how immune-based treatments are currently being harnessed to target the CAF population itself.

3.
Cancer Metastasis Rev ; 40(2): 377-389, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33682030

RESUMO

The development of cancer stems from genetic instability and changes in genomic sequences, and hence, the heterogeneity exhibited by tumors is integral to the nature of cancer itself. Tumor heterogeneity can be further altered by factors that are not cancer cell intrinsic, i.e., by the microenvironment, including the patient's immune responses to tumors and administered therapies (immunotherapies, chemotherapies, and/or radiation therapies). The focus of this review is the impact of tumor heterogeneity on the interactions between immune cells and the tumor, taking into account that heterogeneity can exist at several levels. These levels include heterogeneity within an individual tumor, within an individual patient (particularly between the primary tumor and metastatic lesions), among the subtypes of a specific type of cancer, or within cancers that originate from different tissues. Because of the potential for immunity (either the natural immune system or via immunotherapeutics) to halt the progression of cancer, major clinical significance exists in understanding the impact of tumor heterogeneity on the associations between immune cells and tumor cells. Increased knowledge of why, whether, and how immune-tumor interactions occur provides the means to guide these interactions and improve outcomes for patients.


Assuntos
Neoplasias/genética , Neoplasias/imunologia , Animais , Citocinas/imunologia , Células Dendríticas/imunologia , Células Dendríticas/patologia , Humanos , Imunoterapia/métodos , Neoplasias/patologia , Neoplasias/terapia , Neutrófilos/imunologia , Neutrófilos/patologia , Linfócitos T/imunologia , Linfócitos T/patologia
4.
J Control Release ; 327: 266-283, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-32711026

RESUMO

Neuroblastoma is the most commonly diagnosed extracranial solid tumor in children. The patients with aggressive metastatic disease or refractory/relapsed neuroblastoma currently face a dismally low chance of survival. Thus, there is a great need for more effective therapies for this illness. In previous studies, we, as well as others, showed that the immune cell chemoattractant C-C motif chemokine ligand 21 (CCL21) is effective as an intratumoral therapy able to slow the growth of cancers. In this current study, we developed and tested an injectable, slow-release, uniform, and optimally loaded alginate nanoformulation of CCL21 as a means to provide prolonged intratumoral treatment. The alginate-nanoformulated CCL21, when injected intratumorally into mice bearing neuroblastoma lesions, significantly prolonged survival and decreased the tumor growth rate compared to CCL21 alone, empty nanoparticles, or buffer. Notably, we also observed complete tumor clearance and subsequent full protection against tumor rechallenge in 33% of nanoformulated CCL21-treated mice. Greater intratumoral presence of nanoformulated CCL21, compared to free CCL21, at days 1 and 2 after treatment ended was confirmed through fluorescent labeling and tracking. Nanoformulated CCL21-treated tumors exhibited a general pattern of prolonged increases in anti-tumor cytokines and relatively lower levels of pro-tumor cytokines in comparison to tumors treated with CCL21 alone or buffer only. Thus, this novel nanoformulation of CCL21 is an effective treatment for neuroblastoma, and may have potential for the delivery of CCL21 to other types of solid tumors in the future and as a slow-release delivery modality for other immunotherapies.


Assuntos
Quimiocina CCL21 , Neuroblastoma , Animais , Linhagem Celular Tumoral , Quimiocina CCL21/uso terapêutico , Humanos , Imunoterapia , Ligantes , Camundongos , Neuroblastoma/tratamento farmacológico
5.
Exp Cell Res ; 390(2): 111960, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32194036

RESUMO

Human leukocyte antigen (HLA) class I molecules present antigenic peptides to cytotoxic T cells, causing lysis of malignant cells. Transplantation biology studies have implicated HLA class I molecules in cell migration, but there has been little evidence presented that they influence cancer cell migration, a contributing factor in metastasis. In this study, we examined the effect of HLA-B on pancreatic cancer cell migration. HLA-B siRNA transfection increased the migration of the S2-013 pancreatic cancer cells but, in contrast, reduced migration of the PANC-1 and MIA PaCa-2 pancreatic cancer cell lines. Integrin molecules have previously been implicated in the upregulation of pancreatic cancer cell migration, and knockdown of HLA-B in S2-013 cells heightened the expression of integrin beta 1 (ITGB1), but in the PANC-1 and MIA PaCa-2 cells HLA-B knockdown diminished ITGB1 expression. A transmembrane sequence in an S2-013 HLA-B heavy chain matches a corresponding sequence in HLA-B in the BxPC-3 pancreatic cancer cell line, and knockdown of BxPC-3 HLA-B mimics the effect of S2-013 HLA-B knockdown on migration. In total, our findings indicate that HLA-B influences the expression of ITGB1 in pancreatic cancer cells, with concurrent distinctions in transmembrane sequences and effects on the migration of the cells.


Assuntos
Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , Antígenos HLA-B/genética , Integrina beta1/genética , Pâncreas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Quinase 1 de Adesão Focal/genética , Quinase 1 de Adesão Focal/metabolismo , Antígenos HLA-B/metabolismo , Humanos , Integrina alfa2/genética , Integrina alfa2/metabolismo , Integrina beta1/metabolismo , Especificidade de Órgãos , Pâncreas/patologia , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais
6.
Cancer Biol Ther ; 20(6): 931-940, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30810435

RESUMO

Beta 2-microglobulin (ß2m) is a component of the major histocompatibility complex (MHC) class I molecule, which presents tumor antigens to T lymphocytes to trigger cancer cell destruction. Notably, ß2m has been reported as persistently expressed, rather than down regulated, in some tumor types. For renal cell and oral squamous cell carcinomas, ß2m expression has been linked to increased migratory capabilities. The migratory ability of pancreatic cancer cells contributes to their metastatic tendencies and lethal nature. Therefore, in this study, we examined the impact of ß2m on pancreatic cancer cell migration. We found that ß2m protein is amply expressed in several human pancreatic cancer cell lines (S2-013, PANC-1, and MIA PaCa-2). Reducing ß2m expression by short interfering RNA (siRNA) transfection significantly slowed the migration of the PANC-1 and S2-013 cancer cell lines, but increased the migration of the MIA PaCa-2 cell line. The amyloid precursor-like protein 2 (APLP2) has been documented as contributing to pancreatic cancer cell migration, invasiveness, and metastasis. We have previously shown that ß2m/HLA class I/peptide complexes associate with APLP2 in S2-013 cells, and in this study we also detected their association in PANC-1 cells but not MIA PaCa-2 cells. In addition, siRNA down regulation of ß2m expression diminished the expression of APLP2 in S2-013 and PANC-1 but heightened the level of APLP2 in MIA PaCa-2 cells, consistent with our migration data and co-immunoprecipitation data. Thus, our findings indicate that ß2m regulates pancreatic cancer cell migration, and furthermore suggest that APLP2 is an intermediary in this process.


Assuntos
Precursor de Proteína beta-Amiloide/genética , Movimento Celular/genética , Proteínas do Tecido Nervoso/genética , Neoplasias Pancreáticas/genética , Microglobulina beta-2/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Antígenos de Histocompatibilidade Classe I/genética , Humanos , Microglobulina beta-2/metabolismo
7.
Oncotarget ; 7(15): 19430-44, 2016 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-26840089

RESUMO

Amyloid precursor protein (APP) and its family members amyloid precursor-like protein 1 (APLP1) and amyloid precursor-like protein 2 (APLP2) are type 1 transmembrane glycoproteins that are highly conserved across species. The transcriptional regulation of APP and APLP2 is similar but not identical, and the cleavage of both proteins is regulated by phosphorylation. APP has been implicated in Alzheimer's disease causation, and in addition to its importance in neurology, APP is deregulated in cancer cells. APLP2 is likewise overexpressed in cancer cells, and APLP2 and APP are linked to increased tumor cell proliferation, migration, and invasion. In this present review, we discuss the unfolding account of these APP family members' roles in cancer progression and metastasis.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Movimento Celular , Proliferação de Células , Neoplasias/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Processamento Alternativo , Sequência de Aminoácidos , Precursor de Proteína beta-Amiloide/química , Precursor de Proteína beta-Amiloide/genética , Animais , Humanos , Neoplasias/genética , Neoplasias/patologia , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Desdobramento de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA