Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Microbiol ; 25(9): 1674-1695, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37655642

RESUMO

Cluster 5 picocyanobacteria significantly contribute to primary productivity in aquatic ecosystems. Estuarine populations are highly diverse and consist of many co-occurring strains, but their physiology remains largely understudied. In this study, we characterized 17 novel estuarine picocyanobacterial strains. Phylogenetic analysis of the 16S rRNA and pigment genes (cpcB and cpeBA) uncovered multiple estuarine and freshwater-related clusters and pigment types. Assays with five representative strains (three phycocyanin rich and two phycoerythrin rich) under temperature (10-30°C), light (10-190 µmol photons m-2 s-1 ), and salinity (2-14 PSU) gradients revealed distinct growth optima and tolerance, indicating that genetic variability was accompanied by physiological diversity. Adaptability to environmental conditions was associated with differential pigment content and photosynthetic performance. Amplicon sequence variants at a coastal and an offshore station linked population dynamics with phylogenetic clusters, supporting that strains isolated in this study represent key ecotypes within the Baltic Sea picocyanobacterial community. The functional diversity found within strains with the same pigment type suggests that understanding estuarine picocyanobacterial ecology requires analysis beyond the phycocyanin and phycoerythrin divide. This new knowledge of the environmental preferences in estuarine picocyanobacteria is important for understanding and evaluating productivity in current and future ecosystems.


Assuntos
Ecossistema , Ficocianina , Ficocianina/genética , Ficoeritrina , Filogenia , RNA Ribossômico 16S/genética
2.
Cells ; 12(7)2023 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-37048146

RESUMO

Air pollution has been a significant problem threatening human health for years. One commonly reported air pollutant is benzo(a)pyrene, a dangerous compound with carcinogenic properties. Values which exceed normative values for benzo(a)pyrene concentration in the air are often noted in many regions of the world. Studies on the worldwide spread of COVID-19 since 2020, as well as avian flu, measles, and SARS, have proven that viruses and bacteria are more dangerous to human health when they occur in polluted air. Regarding cyanobacteria and microalgae, little is known about their relationship with benzo(a)pyrene. The question is whether these microorganisms can pose a threat when present in poor quality air. We initially assessed whether cyanobacteria and microalgae isolated from the atmosphere are sensitive to changes in PAH concentrations and whether they can accumulate or degrade PAHs. The presence of B(a)P has significantly affected both the quantity of cyanobacteria and microalgae cells as well as their chlorophyll a (chl a) content and their ability to fluorescence. For many cyanobacteria and microalgae, an increase in cell numbers was observed after the addition of B(a)P. Therefore, even slight air pollution with benzo(a)pyrene is likely to facilitate the growth of airborne cyanobacteria and microalgae. The results provided an assessment of the organisms that are most susceptible to cellular stress following exposure to benzo(a)pyrene, as well as the potential consequences for the environment. Additionally, the results indicated that green algae have the greatest potential for degrading PAHs, making their use a promising bioremediation approach. Kirchneriella sp. demonstrated the highest average degradation of B(a)P, with the above-mentioned research indicating it can even degrade up to 80% of B(a)P. The other studied green algae exhibited a lower, yet still significant, B(a)P degradation rate exceeding 50% when compared to cyanobacteria and diatoms.


Assuntos
COVID-19 , Clorófitas , Cianobactérias , Microalgas , Hidrocarbonetos Policíclicos Aromáticos , Humanos , Animais , Microalgas/metabolismo , Benzo(a)pireno , Carcinógenos , Clorofila A/metabolismo , Cianobactérias/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Clorófitas/metabolismo
3.
Mar Environ Res ; 179: 105700, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35841831

RESUMO

The aim of the study was to determine the effect of static magnetic field (SMF) and electromagnetic field (EMF), of values usually recorded near submarine cables, on the bioenergetics, oxidative stress, and neurotoxicity in the cockle Cerastoderma glaucum. Bivalves maintained a positive energy balance, but the filtration rate and energy available for individual production were significantly lower in SMF-exposed animals compared to the control treatment. No changes in the respiration were noted but ammonia excretion rate was significantly lower after exposure to EMF. Changes in the activities of antioxidant enzymes and the lipid peroxidation were not observed however, exposure to both fields resulted in increased protein carbonylation. After exposure to EMF a significant inhibition of acetylcholinesterase activity was observed. As the present study for the first time revealed the oxidative damage and neurotoxicity in marine invertebrate after exposure to artificial magnetic fields, the need for further research is highlighted.


Assuntos
Acetilcolinesterase , Bivalves , Animais , Campos Eletromagnéticos/efeitos adversos , Peroxidação de Lipídeos , Campos Magnéticos , Estresse Oxidativo
4.
Mar Environ Res ; 179: 105671, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35675719

RESUMO

Organisms from the Synechococcus genus constitute one of the major contributors to oceanic primary production, broadly distributed in waters with wide range of environmental conditions. This work investigated the influence of abiotic factors (temperature, irradiance, and salinity) on the strength of allelopathic interactions between different phenotypes of picoplanktonic cyanobacteria of the genus Synechococcus sp. (Type 1, Type 2, and Type 3a) employing mixed cultures and cell-free filtrate assays. The response variables studied were population growth and content of photosynthetic pigments: chlorophyll a (Chl a), carotenoids (Car), phycocyanin (PC), phycoerythrin (PE), and allophycocyanin (APC). Temperature was shown to be the most significant abiotic factor impacting the allelopathy of Synechococcus sp. phenotypes, with the Type 2 most significantly impacted. Irradiance also had a significant effect, having the largest effect on allelopathy of Type 3a phenotype. Changes in salinity had the greatest effect on allelopathy of Type 1. Our study has shown the significant influence of temperature, irradiance, and salinity on the strength of allelopathic compounds secreted by Synechococcus sp. phenotypes, with temperature the most significantly affecting allelopathic properties. Moreover, we discovered that the allelopathic response to changing environmental factors is highly phenotype-specific. This differential response of allelopathy could help different phenotypes of Synechococcus sp. to coexist in the water column.


Assuntos
Synechococcus , Alelopatia , Clorofila A , Fenótipo , Salinidade , Synechococcus/genética , Temperatura
5.
Sci Total Environ ; 826: 154152, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35227725

RESUMO

Apart from viruses and bacteria, cyanobacteria and microalgae present in the atmosphere may pose a threat to the health of humans by inducing illnesses and diseases. Yet, they play an important role in the environment, influencing the Earth's radiation budget by absorbing and scattering solar radiation. The present study determined the daily and seasonal qualitative and qualitative variabilities of airborne cyanobacteria and microalgae during both vegetative and non-vegetative seasons in the coastal zone of the Baltic Sea. Samples were collected from January to December 2020 with a Tisch six-stage microbiological impactor which was used as a substitute for the respiratory tract. The stage levels of the impactor represented the respiratory tract and reproduced lung penetration by airborne particles, which allowed us to assess penetration of cyanobacteria and microalgae to the deepest parts of the human respiratory system. A total of 296 samples of cyanobacteria and microalgae were collected during the day and 276 samples during the night. The results showed that cyanobacteria and microalgae were present in the air all year, and their maximum abundance was 1685 cells m-3 in July. Furthermore, the ability of these microorganisms to produce the toxin microcystin-LR (MC-LR) was confirmed, which has a high potential negative impact on human health. MC-LR has been found in Nostoc sp., Pseudanabaena sp., Leptolyngbya sp., Synechococcus sp., Gloeocapsa sp., Aphanothece sp., and Rivularia sp. maintained at our Culture Collection of Airborne Algae (CCAA), as well as from air samples. The highest concentrations of MC-LR were recorded in airborne Synechococcus sp. CCAA 46 and amounted to as much as 420 fg cell-1. In turn, the highest mean concentration of 0.95 µg L-1 for MC-LR was recorded in an air sample taken in May. This research expands the knowledge on cyanobacteria and microalgae present in the atmosphere in the coastal zone of the southern Baltic Sea. We propose these microorganisms be used as indicators for further research on bioaerosols, which are potentially dangerous to human health.


Assuntos
Cianobactérias , Microalgas , Países Bálticos , Humanos , Microcistinas
6.
Sci Rep ; 12(1): 2029, 2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-35132131

RESUMO

Airborne cyanobacteria and microalgae are commonly found in the atmosphere and may pose a serious human health risk. This study presents an innovative investigation of the washout efficiency of airborne cyanobacteria and microalgae in the Gulf of Gdansk (southern Baltic Sea). For the first time, the number and type of cyanobacteria and microalgae were determined in rainwater samples and in air before and after rainfall events. The number of cyanobacteria and microalgae cells in the rainwater samples ranged, depending on, e.g., weather conditions, from 100 cells L-1 to 342.2 × 103 cells L-1. Several harmful taxa, such as Chlorococcum sp., Oocystis sp., Anabaena sp., Leptolyngbya sp., Nodularia sp., Pseudanabaena sp., Synechococcus sp., Synechocystis sp., and Gymnodinium sp., were noted in our study. Washing out by rain is extremely relevant to human health and decreases the chance that people inhale these species and their toxic metabolic products. The greatest diversity of airborne microalgae and cyanobacteria was recorded in July 2019, despite this being the period with the lowest number of cells in rainwater samples. Research conducted in the southern Baltic Sea region confirmed the relationship between the occurrence of cyanobacteria and microalgae in the air and blooms in the sea. It is worth emphasizing that the number of microalgae and cyanobacteria cells decreased by up to 87% after a rainfall event relative to that before the rainfall event. The obtained results significantly increase the level of knowledge about cyanobacteria and microalgae present in the air. By demonstrating the washout efficiencies of cyanobacteria and microalgae, the results indicate the potential of individual taxa to be removed from the atmosphere with rainfall. The findings of this study are helpful for further research on airborne microorganisms and air quality.


Assuntos
Microbiologia do Ar , Cianobactérias , Microalgas , Chuva , Poluição do Ar , Países Bálticos , Cianobactérias/metabolismo , Microalgas/metabolismo
7.
Int J Mol Sci ; 22(15)2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34360628

RESUMO

Macroalgae are the source of many harmful allelopathic compounds, which are synthesized as a defense strategy against competitors and herbivores. Therefore, it can be predicted that certain species reduce aquaculture performance. Herein, the allelopathic ability of 123 different taxa of green, red, and brown algae have been summarized based on literature reports. Research on macroalgae and their allelopathic effects on other animal organisms was conducted primarily in Australia, Mexico, and the United States. Nevertheless, there are also several scientific reports in this field from South America and Asia; the study areas in the latter continents coincide with areas where aquaculture is highly developed and widely practiced. Therefore, the allelopathic activity of macroalgae on coexisting animals is an issue that is worth careful investigation. In this work, we characterize the distribution of allelopathic macroalgae and compare them with aquaculture locations, describe the methods for the study of macroalgal allelopathy, present the taxonomic position of allelopathic macroalgae and their impact on coexisting aquatic competitors (Cnidaria) and herbivores (Annelida, Echinodermata, Arthropoda, Mollusca, and Chordata), and compile information on allelopathic compounds produced by different macroalgae species. This work gathers the current knowledge on the phenomenon of macroalgal allelopathy and their allelochemicals affecting aquatic animal (competitors and predators) worldwide and it provides future research directions for this topic.


Assuntos
Alelopatia , Aquicultura , Invertebrados , Defesa das Plantas contra Herbivoria , Alga Marinha/metabolismo , Animais , Herbivoria , Alga Marinha/genética
8.
Toxins (Basel) ; 13(8)2021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-34437460

RESUMO

Macroalgae can directly restrict the growth of various phytoplankton species by releasing allelopathic compounds; therefore, considerable attention should be paid to the allelopathic potential of these organisms against harmful and bloom-forming cyanobacteria. The main aim of this study was to demonstrate for the first time the allelopathic activity of Ulva intestinalis on the growth, the fluorescence parameters: the maximum PSII quantum efficiency (Fv/Fm) and the effective quantum yield of PSII photochemistry (ΦPSII), the chlorophyll a (Chl a) and carotenoid (Car) content, and the microcystin-LR (MC-LR) and phenol content of three bloom-forming cyanobacteria, Aphanizomenon sp., Nodularia spumigena, and Nostoc sp. We found both negative and positive allelopathic effects of U. intestinalis on tested cyanobacteria. The study clearly showed that the addition of the filtrate of U. intestinalis significantly inhibited growth, decreased pigment content and Fv/Fm and ΦPSII values of N. spumigena and Nostoc sp., and stimulated Aphanizomenon sp. The addition of different concentrations of aqueous extract also stimulated the cyanobacterial growth. It was also shown that the addition of extract obtained from U. intestinalis caused a significant decrease in the MC-LR content in Nostoc sp. cells. Moreover, it the phenol content in N. spumigena cells was increased. On the other hand, the cell-specific phenol content for Aphanizomenon sp. decreased due to the addition of the filtrate. In this work, we demonstrated that the allelopathic effect of U. intestinalis depends on the target species' identity as well as the type of allelopathic method used. The study of the allelopathic Baltic macroalgae may help to identify their possible role as a significant biological factor influencing harmful cyanobacterial blooms in brackish ecosystems.


Assuntos
Aphanizomenon/crescimento & desenvolvimento , Cianobactérias/efeitos dos fármacos , Cianobactérias/crescimento & desenvolvimento , Nodularia/crescimento & desenvolvimento , Nostoc/crescimento & desenvolvimento , Feromônios/toxicidade , Fotossíntese/efeitos dos fármacos , Aphanizomenon/efeitos dos fármacos , Nodularia/efeitos dos fármacos , Nostoc/efeitos dos fármacos , Fitoplâncton/efeitos dos fármacos , Fitoplâncton/crescimento & desenvolvimento , Pigmentos Biológicos , Alga Marinha/química , Ulva/química
9.
Sci Total Environ ; 773: 145681, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33940759

RESUMO

Allelopathy is widespread in marine, brackish, and freshwater habitats. Literature data indicate that allelopathy could offer a competitive advantage for some phytoplankton species by reducing the growth of competitors. It is also believed that allelopathy may affect species succession. Thus, allelopathy may play a role in the development of blooms. Over the past few decades, the world's coastal waters have experienced increases in the numbers of cyanobacterial and microalgal blooming events. Understanding how allelopathy is implicated with other biological and environmental factors as a bloom-development mechanism is an important topic for future research. This review focuses on a taxonomic overview of allelopathic cyanobacteria and microalgae, the biological and environmental factors that affect allelochemical production, their role in ecological dynamics, and their physiological modes of action, as well as potential industrial applications of allelopathic compounds.


Assuntos
Cianobactérias , Fitoplâncton , Alelopatia , Ecossistema , Feromônios/toxicidade
10.
Cells ; 10(1)2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33429949

RESUMO

Cyanobacteria and microalgae present in the aquatic or terrestrial environment may be emitted into the air and transported along with air masses over long distances. As a result of staying in the atmosphere, these organisms may develop a greater tolerance to stressful factors, but this topic is still relatively unknown. The main aim was to show an autecological characteristic of some airborne microalgae and cyanobacteria strains by a factorial laboratory experiment approach, including changes in irradiance, temperature, and salinity conditions. The additional purpose of this work was also to present part of the Culture Collection of Baltic Algae (CCBA) collection, which consists of airborne algae (AA) isolated from the atmospheric air of the southern Baltic Sea region. Altogether, 61 strains of airborne cyanobacteria and microalgae from the southern Baltic Sea region were isolated from May 2018 to August 2020. Selected microorganisms were tested in controlled laboratory conditions to identify their response to different irradiance (10-190 µmol photons m-2 s-1), temperature (13-23 °C), and salinity conditions (0-36 PSU). The highest numbers of cells (above 30 × 105 cell mL-1) were recorded for cyanobacterium Nostoc sp., and for diatoms Nitzschia sp., Amphora sp., and Halamphora sp. We found that for cyanobacterium Nostoc sp. as well as for green alga Coccomyxa sp. the maximum cell concentrations were recorded at the salinity of 0 PSU. Moreover, cyanobacteria Planktolyngbya contorta, Pseudanabaena catenata, Leptolyngbya foveolarum, Gloeocapsa sp., and Rivularia sp. were able to grow only at a salinity of 0 PSU. On the other hand, in the range of 16-24 PSU, the highest cell numbers of examined diatoms have been identified. Our research provided that deposited airborne microalgae and cyanobacteria showed full colonization potential. The present experiment suggests that the adaptive abilities of microorganisms, in particular those producing toxins, may contribute to the spread in the future. Thus, it may increase human exposure to their negative health effects. Any distinctive adaptations of the genera give them an additional competitive advantage and a greater chance for territorial expansion.


Assuntos
Cianobactérias/isolamento & purificação , Cianobactérias/fisiologia , Microalgas/isolamento & purificação , Microalgas/fisiologia , Fotossíntese , Cianobactérias/efeitos da radiação , Luz , Microalgas/efeitos da radiação , Oceanos e Mares , Complexo de Proteína do Fotossistema II/metabolismo , Pigmentos Biológicos/metabolismo , Teoria Quântica , Temperatura
11.
Cells ; 9(9)2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32899279

RESUMO

It is estimated that the genus Synechococcus is responsible for about 17% of net primary production in the Global Ocean. Blooms of these organisms are observed in tropical, subtropical and even temperate zones, and they have been recorded recently even beyond the polar circle. The long-term scenarios forecast a growing expansion of Synechococcus sp. and its area of dominance. This is, among others, due to their high physiological plasticity in relation to changing environmental conditions. Three phenotypes of the genus Synechococcus sp. (Type 1, Type 2, and Type 3a) were tested in controlled laboratory conditions in order to identify their response to various irradiance (10, 55, 100 and 145 µmol photons m-2 s-1) and temperature (15, 22.5 and 30 °C) conditions. The highest total pigment content per cell was recorded at 10 µmol photons m-2 s-1 at all temperature variants with the clear dominance of phycobilins among all the pigments. In almost every variant the highest growth rate was recorded for the Type 1. The lowest growth rates were observed, in general, for the Type 3a. However, it was recognized to be less temperature sensitive in comparison to the other two types and rather light-driven with the highest plasticity and adaptation potential. The highest amounts of carotenoids were produced by Type 2 which also showed signs of the cell stress even around 55 µmol photons m-2 s-1 at 15 °C and 22.5 °C. This may imply that the Type 2 is the most susceptible to higher irradiances. Picocyanobacteria Synechococcus sp. require less light intensity to achieve the maximum rate of photosynthesis than larger algae. They also tolerate a wide range of temperatures which combined together make them gain a powerful competitive advantage. Our results will provide key information for the ecohydrodynamical model development. Thus, this work would be an important link in forecasting future changes in the occurrence of these organisms in the context of global warming.


Assuntos
Fotossíntese/fisiologia , Synechococcus/metabolismo , Humanos , Fenótipo , Temperatura
12.
PLoS One ; 15(9): e0238808, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32913356

RESUMO

The presence of airborne cyanobacteria and microalgae as well as their negative impacts on human health have been documented by many researchers worldwide. However, studies on cyanobacteria and microalgae are few compared with those on bacteria and viruses. Research is especially lacking on the presence and taxonomic composition of cyanobacteria and microalgae near economically important water bodies with much tourism, such as the Adriatic Sea region. Here, we present the first characterization of the airborne cyanobacteria and microalgae in this area. Sampling conducted between 11th and 15th June 2017 revealed a total of 15 taxa of airborne cyanobacteria and microalgae. Inhalation of many of the detected taxa, including Synechocystis sp., Synechococcus sp., Bracteacoccus sp., Chlorella sp., Chlorococcum sp., Stichococcus sp., and Amphora sp., poses potential threats to human health. Aside from two green algae, all identified organisms were capable of producing harmful metabolites, including toxins. Moreover, we documented the presence of the cyanobacterium Snowella sp. and the green alga Tetrastrum sp., taxa that had not been previously documented in the atmosphere by other researchers. Our study shows that the Adriatic Sea region seems to be a productive location for future research on airborne cyanobacteria and microalgae in the context of their impacts on human health, especially during the peak of tourism activity.


Assuntos
Microbiologia do Ar , Cianobactérias/isolamento & purificação , Microalgas/isolamento & purificação , Toxinas Bacterianas , Cianobactérias/classificação , Cianobactérias/metabolismo , Humanos , Região do Mediterrâneo , Microalgas/classificação , Microalgas/metabolismo , Saúde Pública , Toxinas Biológicas
13.
Mar Drugs ; 18(4)2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-32230878

RESUMO

Organisms belonging to Synechococcus sp. genera are observed in all freshwater, brackish, and marine waters of the world. They play a relevant role in these ecosystems, since they are one of the main primary producers, especially in open ocean. Eventually, they form mass blooms in coastal areas, which are potentially dangerous for the functioning of marine ecosystems. Allelopathy could be an important factor promoting the proliferation of these organisms. According to the authors' best knowledge, there is no information on the allelopathic activity and allelopathic compounds exhibited by different Synechococcus sp. phenotypes. Therefore, the research conducted here aimed to study the bioactivity of compounds produced by three phenotypes of Synechococcus sp. by studying their influence on the growth, chlorophyll fluorescence, and photosynthetic pigments of eighteen cyanobacteria and microalgae species. We demonstrated that three different Synechococcus sp. phenotypes, including a phycocyanin (PC)-rich strain (Type 1; green strain) and phycoerythrin (PE)-rich strains containing phycoerythrobilin (PEB) and phycocyanobilin (PCB) (Type 2; red strain and Type 3a; brown strain), had a significant allelopathic effect on the selected species of cyanobacteria, diatoms, and green algae. For all green algae, a decrease in cell abundance under the influence of phenotypes of donor cyanobacteria was shown, whereas, among some target cyanobacteria and diatom species, the cell-free filtrate was observed to have a stimulatory effect. Our estimates of the stress on photosystem II (Fv/Fm) showed a similar pattern, although for some diatoms, there was an effect of stress on photosynthesis, while a stimulatory effect on growth was also displayed. The pigment content was affected by allelopathy in most cases, particularly for chlorophyll a, whilst it was a bit less significant for carotenoids. Our results showed that Synechococcus sp. Type 3a had the strongest effect on target species, while Synechococcus sp. Type 1 had the weakest allelopathic effect. Furthermore, GC-MS analysis produced different biochemical profiles for the Synechococcus strains. For every phenotype, the most abundant compound was different, with oxime-, methoxy-phenyl- being the most abundant substance for Synechococcus Type 1, eicosane for Synechococcus Type 2, and silanediol for Synechococcus Type 3a.


Assuntos
Proliferação Nociva de Algas/fisiologia , Feromônios/metabolismo , Fitoplâncton/fisiologia , Synechococcus/fisiologia , Microbiologia da Água , Alelopatia/fisiologia , Proliferação de Células/fisiologia , Feromônios/química , Fotossíntese , Ficobilinas/metabolismo , Ficocianina/metabolismo , Ficoeritrina/metabolismo , Fitoplâncton/química , Silanos/metabolismo , Synechococcus/química
14.
Toxins (Basel) ; 12(4)2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32316304

RESUMO

The contribution of picocyanobacteria to summer phytoplankton blooms, accompanied by an ecological crisis, is a new phenomenon in Europe. This issue requires careful investigation. We studied allelopathic activity of freshwater picocyanobacterium Synechococcus sp. on phytoplankton assemblages from three freshwater lakes. In this study, the allelopathic activity of the Synechococcus sp. on the total abundance, biomass, as well as structure of the phytoplankton assemblages were investigated. Our results indicated that addition of exudates obtained from Synechococcus sp. affected the number of cells and biomass of the phytoplankton communities; the degree of inhibition or stimulation was different for each species, causing a change in the phytoplankton abundance and dominance during the experiment. We observed that some group of organisms (especially cyanobacteria from the genus Aphanothece, Limnothrix, Microcystis, and Synechococcus) showed tolerance for allelopathic compounds produced and released by Synechococcus sp. It is also worth noting that in some samples, Bacillariophyceae (e.g., Amphora pediculus, Navicula pygmaea, and Nitzschia paleacea) were completely eliminated in the experimental treatments, while present in the controls. This work demonstrated that the allelopathic activity exhibited by the Synechococcus sp. is probably one of the major competitive strategies affecting some of the coexisting phytoplankton species in freshwater ecosystems. To our best knowledge this is the first report of the allelopathic activity of Synechococcus sp. in the freshwater reservoirs, and one of the few published works showing allelopathic properties of freshwater picocyanobacteria on coexisting phytoplankton species.


Assuntos
Alelopatia , Lagos/microbiologia , Fitoplâncton/isolamento & purificação , Synechococcus/isolamento & purificação , Biomassa , Fitoplâncton/fisiologia , Polônia , Synechococcus/fisiologia
15.
Toxins (Basel) ; 11(12)2019 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-31817796

RESUMO

Only a few studies have documented the physiological effects of allelopathy from cyanobacteria against coexisting microalgae. We investigated the allelopathic ability of the bloom-forming cyanobacteria Synechococcus sp. and Nodularia spumigena filtrates on several aspects related to the physiology of the target species: population growth, cell morphology, and several indexes of photosynthesis rate and respiration. The target species were the following: two species of green algae (Oocystis submarina, Chlorella vulgaris) and two species of diatoms (Bacillaria paxillifer, Skeletonema marinoi). These four species coexist in the natural environment with the employed strains of Synechococcus sp. and N. spumigena employed. The tests were performed with single and repeated addition of cyanobacterial cell-free filtrate. We also tested the importance of the growth phase in the strength of the allelopathic effect. The negative effects of both cyanobacteria were the strongest with repeated exudates addition, and generally, Synechococcus sp. and N. spumigena were allelopathic only in the exponential growth phase. O. submarina was not negatively affected by Synechococcus filtrates in any of the parameters studied, while C. vulgaris, B. paxillifer, and S. marinoi were affected in several ways. N. spumigena was characterized by a stronger allelopathic activity than Synechococcus sp., showing a negative effect on all target species. The highest decline in growth, as well as the most apparent cell physical damage, was observed for the diatom S. marinoi. Our findings suggest that cyanobacterial allelochemicals are associated with the cell physical damage, as well as a reduced performance in respiration and photosynthesis system in the studied microalgae which cause the inhibition of the population growth. Moreover, our study has shown that some biotic factors that increase the intensity of allelopathic effects may also alter the ratio between bloom-forming cyanobacteria and some phytoplankton species that occur in the same aquatic ecosystem.


Assuntos
Clorófitas , Diatomáceas , Microalgas , Nodularia/metabolismo , Feromônios/metabolismo , Synechococcus/metabolismo , Alelopatia , Clorófitas/crescimento & desenvolvimento , Clorófitas/metabolismo , Diatomáceas/crescimento & desenvolvimento , Diatomáceas/metabolismo , Eutrofização , Microalgas/crescimento & desenvolvimento , Microalgas/metabolismo , Fotossíntese
16.
Environ Sci Pollut Res Int ; 25(36): 36403-36411, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30368710

RESUMO

The role of macroalgal allelopathy in aquatic systems has received increasing attention as a potential means of controlling cyanobacterial blooms. However, the allelopathic activity of Chara sp. on coexisting and bloom-forming picocyanobacteria is still largely unknown. Therefore, the laboratory experiments were conducted to investigate the allelopathic activity of extracts of Chara aspera, C. baltica, and C. canescens on the growth, the fluorescence parameters: maximum and effective quantum yield of photosystem II (PSII) photochemistry (Fv/Fm and ΦPSII, respectively) and photosynthesis parameters such as the initial slope of photosynthesis-irradiance (P-E) curves (alpha) and photosynthetic capacity (Pm) of the picocyanobacterium Synechococcus sp. Batch cultures of picocyanobacterium were exposed to three concentrations of extracts originating from three charophyte cultures and the effect was followed at three sampling times. Dried specimens of C. aspera, C. baltica, and C. canescens were extracted in the water-based matrix and the initial Synechococcus sp. inoculum, derived from unialgal culture media, was used. We found both negative and positive allelopathic effects of all tested Chara extracts on Synechococcus sp. The strongest adverse impact of picocyanobacterium growth was caused by C. baltica. This study clearly demonstrated that the allelopathic effect depends on the Chara species identity. Our results also suggested that some allelopathic Chara sp. have the potential to mitigate harmful cyanobacterial blooms in systems dominated by Synechococcus sp.


Assuntos
Alelopatia , Chara/química , Synechococcus/efeitos dos fármacos , Synechococcus/fisiologia , Chara/fisiologia , Clorofila/metabolismo , Eutrofização , Fluorescência , Fotossíntese/efeitos dos fármacos , Complexo de Proteína do Fotossistema II/metabolismo , Extratos Vegetais/farmacologia
17.
Toxins (Basel) ; 10(1)2018 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-29361682

RESUMO

Picocyanobacteria are extremely important organisms in the world's oceans and freshwater ecosystems. They play an essential role in primary production and their domination in phytoplankton biomass is common in both oligotrophic and eutrophic waters. Their role is expected to become even more relevant with the effect of climate change. However, this group of photoautotrophic organisms still remains insufficiently recognized. Only a few works have focused in detail on the occurrence of massive blooms of picocyanobacteria, their toxicity and allelopathic activity. Filling the gap in our knowledge about the mechanisms involved in the proliferation of these organisms could provide a better understanding of aquatic environments. In this review, we gathered and described recent information about allelopathic activity of picocyanobacteria and occurrence of their massive blooms in many aquatic ecosystems. We also examined the relationships between climate change and representative picocyanobacterial genera from freshwater, brackish and marine ecosystems. This work emphasizes the importance of studying the smallest picoplanktonic fractions of cyanobacteria.


Assuntos
Cianobactérias , Eutrofização , Fitoplâncton , Alelopatia , Animais , Humanos
18.
Mar Pollut Bull ; 125(1-2): 30-38, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-28823424

RESUMO

Bioaerosols were collected between April and November 2015 on land (Gdynia) and at sea (Southwestern Baltic), using six-step microbiological pollutant sampler. It was determined that picoplanktonic cyanobacteria of the genus Synechococcus, Synechocystis, Aphanocapsa, Aphanothece, Microcystis, Merismopedia, Woronichinia and Cyanodictyon were the most commonly found in aerosols both over land and at sea. Chlorophyta were also numerous (Chlorella vulgaris, Stichococcus bacillaris), as were Bacillariophyta and Ochrophyta (Phaeodactylum sp., Navicula cf. perminuta and Nannochloropsis cf. gaditana). As primary production and phytoplankton concentration in sea water grew, so did the diversity of the microorganisms identified in bioaerosols. Over the sea cyanobacteria and microalgae occurred more often in large aerosols (>3.3µm). Over land they were mainly the components of smaller particles. In respirable particles species both capable of producing harmful secondary metabolites and potentially toxic ones were identified. We assume that bioaerosols pose the actual threat to human health in Baltic Sea region.


Assuntos
Aerossóis/análise , Microbiologia do Ar , Cianobactérias/isolamento & purificação , Microalgas/isolamento & purificação , Aerossóis/toxicidade , Países Bálticos , Chlorella vulgaris/isolamento & purificação , Clorófitas , Diatomáceas , Humanos , Fitoplâncton , Água do Mar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA