Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(24): 10582-10590, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38836357

RESUMO

Coastal environments are a major source of marine methane in the atmosphere. Eutrophication and deoxygenation have the potential to amplify the coastal methane emissions. Here, we investigate methane dynamics in the eutrophic Stockholm Archipelago. We cover a range of sites with contrasting water column redox conditions and rates of organic matter degradation, with the latter reflected by the depth of the sulfate-methane transition zone (SMTZ) in the sediment. We find the highest benthic release of methane (2.2-8.6 mmol m-2 d-1) at sites where the SMTZ is located close to the sediment-water interface (2-10 cm). A large proportion of methane is removed in the water column via aerobic or anaerobic microbial pathways. At many locations, water column methane is highly depleted in 13C, pointing toward substantial bubble dissolution. Calculated and measured rates of methane release to the atmosphere range from 0.03 to 0.4 mmol m-2 d-1 and from 0.1 to 1.7 mmol m-2 d-1, respectively, with the highest fluxes at locations with a shallow SMTZ and anoxic and sulfidic bottom waters. Taken together, our results show that sites suffering most from both eutrophication and deoxygenation are hotspots of coastal marine methane emissions.


Assuntos
Eutrofização , Metano , Sedimentos Geológicos/química , Água do Mar/química , Oxigênio , Atmosfera/química
2.
Environ Sci Technol ; 58(26): 11421-11435, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38888209

RESUMO

Coastal zones account for 75% of marine methane emissions, despite covering only 15% of the ocean surface area. In these ecosystems, the tight balance between methane production and oxidation in sediments prevents most methane from escaping into seawater. However, anthropogenic activities could disrupt this balance, leading to an increased methane escape from coastal sediments. To quantify and unravel potential mechanisms underlying this disruption, we used a suite of biogeochemical and microbiological analyses to investigate the impact of anthropogenically induced redox shifts on methane cycling in sediments from three sites with contrasting bottom water redox conditions (oxic-hypoxic-euxinic) in the eutrophic Stockholm Archipelago. Our results indicate that the methane production potential increased under hypoxia and euxinia, while anaerobic oxidation of methane was disrupted under euxinia. Experimental, genomic, and biogeochemical data suggest that the virtual disappearance of methane-oxidizing archaea at the euxinic site occurred due to sulfide toxicity. This could explain a near 7-fold increase in the extent of escape of benthic methane at the euxinic site relative to the hypoxic one. In conclusion, these insights reveal how the development of euxinia could disrupt the coastal methane biofilter, potentially leading to increased methane emissions from coastal zones.


Assuntos
Sedimentos Geológicos , Metano , Oxirredução , Sulfetos , Metano/metabolismo , Sedimentos Geológicos/química , Anaerobiose , Água do Mar/química , Eutrofização , Archaea/metabolismo
3.
Sci Total Environ ; 934: 173046, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38735326

RESUMO

Although marine environments represent huge reservoirs of the potent greenhouse gas methane, they currently contribute little to global net methane emissions. Most of the methane is oxidized by methanotrophs, minimizing escape to the atmosphere. Aerobic methanotrophs oxidize methane mostly via the copper (Cu)-bearing enzyme particulate methane monooxygenase (pMMO). Therefore, aerobic methane oxidation depends on sufficient Cu acquisition by methanotrophs. Because they require both oxygen and methane, aerobic methanotrophs reside at oxic-anoxic interfaces, often close to sulphidic zones where Cu bioavailability can be limited by poorly soluble Cu sulphide mineral phases. Under Cu-limiting conditions, certain aerobic methanotrophs exude Cu-binding ligands termed chalkophores, such as methanobactin (mb) exuded by Methylosinus trichosporium OB3b. Our main objective was to establish whether chalkophores can mobilise Cu from Cu sulphide-bearing marine sediments to enhance Cu bioavailability. Through a series of kinetic batch experiments, we investigated Cu mobilisation by mb from a set of well-characterized sulphidic marine sediments differing in sediment properties, including Cu content and phase distribution. Characterization of solid-phase Cu speciation included X-ray absorption spectroscopy and a targeted sequential extraction. Furthermore, in batch experiments, we investigated to what extent adsorption of metal-free mb and Cu-mb complexes to marine sediments constrains Cu mobilisation. Our results are the first to show that both solid phase Cu speciation and chalkophore adsorption can constrain methanotrophic Cu acquisition from marine sediments. Only for certain sediments did mb addition enhance dissolved Cu concentrations. Cu mobilisation by mb was not correlated to the total Cu content of the sediment, but was controlled by solid-phase Cu speciation. Cu was only mobilised from sediments containing a mono-Cu-sulphide (CuSx) phase. We also show that mb adsorption to sediments limits Cu acquisition by mb to less compact (surface) sediments. Therefore, in sulphidic sediments, mb-mediated Cu acquisition is presumably constrained to surface-sediment interfaces containing mono-Cu-sulphide phases.


Assuntos
Cobre , Sedimentos Geológicos , Imidazóis , Methylosinus trichosporium , Oligopeptídeos , Cobre/metabolismo , Sedimentos Geológicos/química , Oligopeptídeos/metabolismo , Imidazóis/metabolismo , Imidazóis/química , Methylosinus trichosporium/metabolismo , Oxirredução , Metano/metabolismo , Oxigenases/metabolismo , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/análise
4.
FEMS Microbiol Ecol ; 100(3)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38281061

RESUMO

In coastal waters, methane-oxidizing bacteria (MOB) can form a methane biofilter and mitigate methane emissions. The metabolism of these MOBs is versatile, and the resilience to changing oxygen concentrations is potentially high. It is still unclear how seasonal changes in oxygen availability and water column chemistry affect the functioning of the methane biofilter and MOB community composition. Here, we determined water column methane and oxygen depth profiles, the methanotrophic community structure, methane oxidation potential, and water-air methane fluxes of a eutrophic marine basin during summer stratification and in the mixed water in spring and autumn. In spring, the MOB diversity and relative abundance were low. Yet, MOB formed a methane biofilter with up to 9% relative abundance and vertical niche partitioning during summer stratification. The vertical distribution and potential methane oxidation of MOB did not follow the upward shift of the oxycline during summer, and water-air fluxes remained below 0.6 mmol m-2 d-1. Together, this suggests active methane removal by MOB in the anoxic water. Surprisingly, with a weaker stratification, and therefore potentially increased oxygen supply, methane oxidation rates decreased, and water-air methane fluxes increased. Thus, despite the potential resilience of the MOB community, seasonal water column dynamics significantly influence methane removal.


Assuntos
Methylococcaceae , Água , Água/metabolismo , Metano/metabolismo , Estações do Ano , Methylococcaceae/genética , Methylococcaceae/metabolismo , Oxirredução , Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA