Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 199
Filtrar
1.
Ann Biomed Eng ; 2024 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-39098978

RESUMO

PURPOSE: This study aims to explore how cyclic loading influences creep response in the lumbar spine under combined flexion-compression loading. METHODS: Ten porcine functional spinal units (FSUs) were mechanically tested in cyclic or static combined flexion-compression loading. Creep response between loading regimes was compared using strain-time histories and linear regression. High-resolution computed tomography (µCT) visualized damage to FSUs. Statistical methods, ANCOVA and ANOVA, assessed differences in behavior between loading regimes. RESULTS: Cyclic and static loading regimes exhibited distinct creep response patterns and biphasic response. ANCOVA and ANOVA analyses revealed significant differences in slopes of creep behavior in both linear phases. Cyclic tests consistently showed endplate fractures in µCT imaging. CONCLUSION: The study reveals statistically significant differences in creep response between cyclic and static loading regimes in porcine lumbar spinal units under combined flexion-compression loading. The observed biphasic behavior suggests distinct phases of tissue response, indicating potential shifts in load transfer mechanisms. Endplate fractures in cyclic tests suggest increased injury risk compared to static loading. These findings underscore the importance of considering loading conditions in computational models and designing preventive measures for occupations involving repetitive spinal loading.

3.
Brain Stimul ; 16(6): 1630-1642, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37863388

RESUMO

BACKGROUND: Traditional deep brain stimulation (DBS) at fixed regular frequencies (>100 Hz) is effective in treating motor symptoms of Parkinson's disease (PD). Temporally non-regular patterns of DBS are a new parameter space that may help increase efficacy and efficiency. OBJECTIVE: To compare the effects of temporally non-regular patterns of DBS to traditional regularly-spaced pulses. METHODS: We simultaneously recorded local field potentials (LFP) and monitored motor symptoms (tremor and bradykinesia) in persons with PD during DBS in subthalamic nucleus (STN). We quantified both oscillatory activity and DBS local evoked potentials (DLEPs) from the LFP. RESULTS: Temporally non-regular patterns were as effective as traditional pulse patterns in modulating motor symptoms, oscillatory activity, and DLEPs. Moreover, one of our novel patterns enabled recording of longer duration DLEPs during clinically effective stimulation. CONCLUSIONS: Stimulation gaps of 50 ms can be used to increase efficiency and to enable regular assessment of long-duration DLEPs while maintaining effective symptom management. This may be a promising paradigm for closed-loop DBS with biomarker assessment during the gaps.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Doença de Parkinson/terapia , Núcleo Subtalâmico/fisiologia , Potenciais Evocados , Tremor/terapia
4.
Birth Defects Res ; 115(3): 357-370, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36369782

RESUMO

BACKGROUND: Human exposures to organophosphate flame retardants result from their use as additives in numerous consumer products. These agents are replacements for brominated flame retardants but have not yet faced similar scrutiny for developmental neurotoxicity. We examined a representative organophosphate flame retardant, triphenyl phosphate (TPP) and its potential effects on behavioral development and dopaminergic function. METHODS: Female Sprague-Dawley rats were given low doses of TPP (16 or 32 mg kg-1  day-1 ) via subcutaneous osmotic minipumps, begun preconception and continued into the early postnatal period. Offspring were administered a battery of behavioral tests from adolescence into adulthood, and littermates were used to evaluate dopaminergic synaptic function. RESULTS: Offspring with TPP exposures showed increased latency to begin eating in the novelty-suppressed feeding test, impaired object recognition memory, impaired choice accuracy in the visual signal detection test, and sex-selective effects on locomotor activity in adolescence (males) but not adulthood. Male, but not female, offspring showed marked increases in dopamine utilization in the striatum, evidenced by an increase in the ratio of the primary dopamine metabolite (3,4-dihydroxyphenylacetic acid) relative to dopamine levels. CONCLUSIONS: These results indicate that TPP has adverse effects that are similar in some respects to those of organophosphate pesticides, which were restricted because of their developmental neurotoxicity.


Assuntos
Retardadores de Chama , Humanos , Animais , Ratos , Masculino , Retardadores de Chama/toxicidade , Dopamina , Ratos Sprague-Dawley , Peixe-Zebra , Organofosfatos/toxicidade
5.
Toxicology ; 472: 153189, 2022 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-35452779

RESUMO

Diazinon is an organophosphate pesticide that has a history of wide use. Developmental exposures to organophosphates lead to neurobehavioral changes that emerge early in life and can persist into adulthood. However, preclinical studies have generally evaluated changes through young adulthood, whereas the persistence or progression of deficits into middle age remain poorly understood. The current study evaluated the effects of maternal diazinon exposure on behavior and neurochemistry in middle age, at 1 year postpartum, comparing the results to our previous studies of outcomes at adolescence and in young adulthood (4 months of age) (Hawkey 2020). Female rats received 0, 0.5 or 1.0 mg/kg/day of diazinon via osmotic minipump throughout gestation and into the postpartum period. The offspring were tested on a battery of locomotor, affective, and cognitive tests at young adulthood and during middle age. Some of the neurobehavioral consequences of developmental DZN seen during adolescence and young adulthood faded with continued aging, whereas other neurobehavioral effects emerged with aging. At middle age, the rats showed few locomotor effects, in contrast to the locomotor hyperactivity that had been observed in adolescence. Notably, though, DZN exposure during development impaired reference memory performance in middle-aged males, an effect that had not been seen in the younger animals. Likewise, middle-aged females exposed to DZN showed deficient attentional accuracy, an effect not seen in young adults. Across adulthood, the continued potential for behavioral defects was associated with altered dopaminergic function, characterized by enhanced dopamine utilization that was regionally-selective (striatum but not frontal/parietal cortex). This study shows that the neurobehavioral impairments from maternal low dose exposure to diazinon not only persist, but may continue to evolve as animals enter middle age.


Assuntos
Diazinon , Inseticidas , Animais , Comportamento Animal , Diazinon/toxicidade , Feminino , Masculino , Organofosfatos/farmacologia , Compostos Organofosforados/farmacologia , Ratos
6.
Toxicol Sci ; 184(2): 252-264, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34590702

RESUMO

The legalization and increasing availability of cannabis products raises concerns about the impact on offspring of users, and little has appeared on the potential contribution of paternal use. We administered cannabis extract to male rats prior to mating, with two different 28-day exposures, one where there was a 56-day interval between the end of exposure and mating ("Early Cannabis"), and one just prior to mating ("Late Cannabis"); the extract delivered 4 mg/kg/day of the main psychoactive component, Δ9-tetrahydrocannabinol. We then assessed the impact on dopamine (DA) systems in the offspring from the onset of adolescence (postnatal day 30) through middle age (postnatal day 150), measuring the levels of DA and its primary metabolite, 3,4-dihydroxyphenylacetic acid (DOPAC) in various brain regions. Paternal cannabis with either regimen elicited a profound and persistent deficit in DA utilization (DOPAC/DA ratio) in the offspring, indicative of subnormal presynaptic activity. However, the two regimens differed in the underlying mechanism, with Early Cannabis reducing DOPAC whereas Late Cannabis increased DA and elicited a smaller reduction in DOPAC. Effects were restricted to male offspring. The effects of cannabis were not reproduced by equivalent exposure to its Δ9-tetrahydrocannabinol, nor did we see the effects with perinatal exposure to tobacco smoke or some of its fetotoxic contributors (benzo[a]pyrene without or with nicotine). Our studies provide some of the first evidence for adverse effects of paternal cannabis administration on neurodevelopment in the offspring, and reinforce the important consequences of paternal drug use in the preconception period.


Assuntos
Cannabis , Animais , Cannabis/toxicidade , Dopamina , Dronabinol/toxicidade , Feminino , Humanos , Masculino , Exposição Paterna/efeitos adversos , Gravidez , Ratos , Reprodução
7.
Environ Res ; 201: 111614, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34216610

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are a toxic and ubiquitous class of environmental chemicals, products of fuel combustion from human and natural sources. The objective of this study was to identify vulnerable populations for high PAH exposure and variability, to better understand where to target PAH exposure reduction initiatives. Urinary metabolite data were collected from 9517 individuals from the U.S. CDC National Health and Nutrition Examination Survey years 2005-2014 for four parental PAHs naphthalene, fluorene, phenanthrene, and pyrene. We utilized these urinary biomarkers to estimate PAH intake, and regression models were fit for multiple demographic and lifestyle variables, to determine variable effects, interactions, odds of high versus low PAH intake. Smoking and secondhand smoke exposure accounted for the largest PAH intake rate variability (25.62%), and there were strongest interactions between race/ethnicity and smoking or SHS exposure, reflected in a much greater contribution of smoking to PAH intake in non-Hispanic Whites as compared to other races/ethnicities. Increased odds of high PAH intake were seen in older age groups, obese persons, college graduates, midrange incomes, smokers, and those who were SHS exposed. Among the non-smoking population, effects of other demographic factors lessened, suggesting a highly interactive nature. Our results suggest that there are demographic subpopulations with high PAH intake as a result of different smoking behaviors and potentially other exposures. This has human health, environmental justice, and regulatory implications wherein smoking cessation programs, SHS exposure regulations, and public health initiatives could be better targeted towards vulnerable subpopulations to meaningfully reduce PAH exposures.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Poluição por Fumaça de Tabaco , Adulto , Idoso , Humanos , Estilo de Vida , Inquéritos Nutricionais , Poluição por Fumaça de Tabaco/efeitos adversos , Populações Vulneráveis
8.
Neurotoxicol Teratol ; 87: 106985, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33901621

RESUMO

A sequence of different classes of synthetic insecticides have been used over the past 70 years. Over this period, the widely-used organochlorines were eventually replaced by organophosphates, with dichlorodiphenyltrichloroethane (DDT) and chlorpyrifos (CPF) as the principal prototypes. Considerable research has characterized the risks of DDT and CPF individually, but little is known about the toxicology of transitioning from one class of insecticides to another, as has been commonplace for agricultural and pest control workers. This study used adult zebrafish to investigate neurobehavioral toxicity following 5-week chronic exposure to either DDT or CPF, to or their sequential exposure (DDT for 5 weeks followed by CPF for 5 weeks). At the end of the exposure period, a subset of fish were analyzed for brain cholinesterase activity. Behavioral effects were initially assessed one week following the end of the CPF exposure and again at 14 months of age using a behavioral test battery covering sensorimotor responses, anxiety-like functions, predator avoidance and social attraction. Adult insecticide exposures, individually or sequentially, were found to modulate multiple behavioral features, including startle responsivity, social approach, predator avoidance, locomotor activity and novel location recognition and avoidance. Locomotor activity and startle responsivity were each impacted to a greater degree by the sequential exposures than by individual compounds, with the latter being pronounced at the early (1-week post exposure) time point, but not 3-4 months later in aging. Social approach responses were similarly impaired by the sequential exposure as by CPF-alone at the aging time point. Fleeing responses in the predator test showed flee-enhancing effects of both compounds individually versus controls, and no additive impact of the two following sequential exposure. Each compound was also associated with changes in recognition or avoidance patterns in a novel place recognition task in late adulthood, but sequential exposures did not enhance these phenotypes. The potential for chemical x chemical interactions did not appear related to changes in CPF metabolism to the active oxon, as prior DDT exposure did not affect the cholinesterase inhibition resulting from CPF. This study shows that the effects of chronic adult insecticide exposures may be relevant to behavioral health initially and much later in life, and that the effects of sequential exposures may be unpredictable based on their constituent exposures.


Assuntos
Comportamento Animal/efeitos dos fármacos , Clorpirifos/toxicidade , DDT/toxicidade , Locomoção/efeitos dos fármacos , Animais , Encéfalo/efeitos dos fármacos , Inibidores da Colinesterase/toxicidade , DDT/metabolismo , Inseticidas/toxicidade , Peixe-Zebra/metabolismo
9.
Toxicol Sci ; 174(2): 210-217, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32077955

RESUMO

Little attention has been paid to the potential impact of paternal marijuana use on offspring brain development. We administered Δ9-tetrahydrocannabinol (THC, 0, 2, or 4 mg/kg/day) to male rats for 28 days. Two days after the last THC treatment, the males were mated to drug-naïve females. We then assessed the impact on development of acetylcholine (ACh) systems in the offspring, encompassing the period from the onset of adolescence (postnatal day 30) through middle age (postnatal day 150), and including brain regions encompassing the majority of ACh terminals and cell bodies. Δ9-Tetrahydrocannabinol produced a dose-dependent deficit in hemicholinium-3 binding, an index of presynaptic ACh activity, superimposed on regionally selective increases in choline acetyltransferase activity, a biomarker for numbers of ACh terminals. The combined effects produced a persistent decrement in the hemicholinium-3/choline acetyltransferase ratio, an index of impulse activity per nerve terminal. At the low THC dose, the decreased presynaptic activity was partially compensated by upregulation of nicotinic ACh receptors, whereas at the high dose, receptors were subnormal, an effect that would exacerbate the presynaptic defect. Superimposed on these effects, either dose of THC also accelerated the age-related decline in nicotinic ACh receptors. Our studies provide evidence for adverse effects of paternal THC administration on neurodevelopment in the offspring and further demonstrate that adverse impacts of drug exposure on brain development are not limited to effects mediated by the embryonic or fetal chemical environment, but rather that vulnerability is engendered by exposures occurring prior to conception, involving the father as well as the mother.


Assuntos
Acetilcolina/metabolismo , Encéfalo/efeitos dos fármacos , Neurônios Colinérgicos/efeitos dos fármacos , Dronabinol/toxicidade , Exposição Paterna , Sinapses/efeitos dos fármacos , Fatores Etários , Animais , Animais Recém-Nascidos , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Colina O-Acetiltransferase/metabolismo , Neurônios Colinérgicos/metabolismo , Feminino , Hemicolínio 3/metabolismo , Masculino , Gravidez , Ratos Sprague-Dawley , Receptores Nicotínicos/metabolismo , Medição de Risco , Sinapses/metabolismo
10.
Neurotoxicol Teratol ; 78: 106853, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31911208

RESUMO

Farmers are often chronically exposed to insecticides, which may present health risks including increased risk of neurobehavioral impairment during adulthood and across aging. Experimental animal studies complement epidemiological studies to help determine the cause-and-effect relationship between chronic adult insecticide exposure and behavioral dysfunction. With the zebrafish model, we examined short and long-term neurobehavioral effects of exposure to either an organochlorine insecticide, dichlorodiphenyltrichloroethane (DDT) or an organophosphate insecticide chlorpyrifos (CPF). Adult fish were exposed continuously for either two or 5 weeks (10-30 nM DDT, 0.3-3 µM CPF), with short- and long-term effects assessed at 1-week post-exposure and at 14 months of age respectively. The behavioral test battery included tests of locomotor activity, tap startle, social behavior, anxiety, predator avoidance and learning. Long-term effects on neurochemical indices of cholinergic function were also assessed. Two weeks of DDT exposure had only slight effects on locomotor activity, while a longer five-week exposure led to hypoactivity and increased anxiety-like diving responses and predator avoidance at 1-week post-exposure. When tested at 14 months of age, these fish showed hypoactivity and increased startle responses. Cholinergic function was not found to be significantly altered by DDT. The two-week CPF exposure led to reductions in anxiety-like diving and increases in shoaling responses at the 1-week time point, but these effects did not persist through 14 months of age. Nevertheless, there were persistent decrements in cholinergic presynaptic activity. A five-week CPF exposure led to long-term effects including locomotor hyperactivity and impaired predator avoidance at 14 months of age, although no effects were apparent at the 1-week time point. These studies documented neurobehavioral effects of adult exposure to chronic doses of either organochlorine or organophosphate pesticides that can be characterized in zebrafish. Zebrafish provide a low-cost model that has a variety of advantages for mechanistic studies and may be used to expand our understanding of neurobehavioral toxicity in adulthood, including the potential for such toxicity to influence behavior and development during aging.


Assuntos
Comportamento Animal/efeitos dos fármacos , Química Encefálica/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Clorpirifos/toxicidade , DDT/toxicidade , Inseticidas/toxicidade , Acetilcolinesterase/metabolismo , Animais , Encéfalo/metabolismo , Feminino , Masculino , Proteínas de Membrana Transportadoras/metabolismo , Peixe-Zebra
11.
Toxicology ; 424: 152240, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31251962

RESUMO

Organophosphate pesticides are developmental neurotoxicants. We gave diazinon via osmotic minipumps implanted into dams prior to conception, with exposure continued into the second postnatal week, at doses (0.5 or 1 mg/kg/day) that did not produce detectable brain cholinesterase inhibition. We evaluated the impact on acetylcholine (ACh) and serotonin (5-hydroxytryptamine, 5HT) systems in brain regions from adolescence through full adulthood. Diazinon produced deficits in presynaptic ACh activity with regional and sex selectivity: cerebrocortical regions and the hippocampus were affected to a greater extent than were the striatum, midbrain or brainstem, and females were more sensitive than males. Diazinon also reduced nicotinic ACh receptors and 5HT1A receptors, with the same regional and sex preferences. These patterns were similar to those of diazinon given in a much more restricted period (postnatal day 1-4) but were of greater magnitude and consistency; this suggests that the brain is vulnerable to diazinon over a wide developmental window. Diazinon's effects differed from those of the related organophosphate, chlorpyrifos, with regard to regional and sex selectivity, and more importantly, to the effects on receptors: chlorpyrifos upregulates nicotinic ACh receptors and 5HT receptors, effects that compensate for the presynaptic ACh deficits. Diazinon can thus be expected to have worse neurodevelopmental outcomes than chlorpyrifos. Further, the disparities between diazinon and chlorpyrifos indicate the problems of predicting the developmental neurotoxicity of organophosphates based on a single compound, and emphasize the inadequacy of cholinesterase inhibition as an index of safety.


Assuntos
Acetilcolina/metabolismo , Inibidores da Colinesterase/toxicidade , Diazinon/toxicidade , Inseticidas/toxicidade , Serotonina/metabolismo , Animais , Animais Recém-Nascidos , Química Encefálica/efeitos dos fármacos , Clorpirifos/toxicidade , Feminino , Masculino , Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores Nicotínicos/biossíntese , Receptores Nicotínicos/efeitos dos fármacos , Receptores Nicotínicos/genética , Receptores de Serotonina/biossíntese , Receptores de Serotonina/efeitos dos fármacos , Receptores de Serotonina/genética , Caracteres Sexuais , Regulação para Cima/efeitos dos fármacos
13.
Toxicol Sci ; 167(1): 293-304, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30247698

RESUMO

Tobacco smoke contains polycyclic aromatic hydrocarbons (PAHs) in addition to nicotine. We compared the developmental neurotoxicity of nicotine to that of the PAH archetype, benzo[a]pyrene (BaP), and also evaluated the effects of combined exposure to assess whether PAHs might exacerbate the adverse effects of nicotine. Pregnant rats were treated preconception through the first postnatal week, modeling nicotine concentrations in smokers and a low BaP dose devoid of systemic effects. We conducted evaluations of acetylcholine (ACh) and serotonin (5-hydroxytryptamine, 5HT) systems in brain regions from adolescence through full adulthood. Nicotine or BaP alone impaired indices of ACh presynaptic activity, accompanied by upregulation of nicotinic ACh receptors and 5HT receptors. Combined treatment elicited a greater deficit in ACh presynaptic activity than that seen with either agent alone, and upregulation of nAChRs and 5HT receptors was impaired or absent. The individual effects of nicotine and BaP accounted for only 60% of the combination effects, which thus displayed unique properties. Importantly, the combined nicotine + BaP exposure recapitulated the effects of tobacco smoke, distinct from nicotine. Our results show that the effects of nicotine on development of ACh and 5HT systems are worsened by BaP coexposure, and that combination of the two agents contributes to the greater impact of tobacco smoke on the developing brain. These results have important implications for the relative safety in pregnancy of nicotine-containing products compared with combusted tobacco, both for active maternal smoking and secondhand exposure, and for the effects of such agents in "dirty" environments with high PAH coexposure.


Assuntos
Benzo(a)pireno/toxicidade , Encéfalo/efeitos dos fármacos , Nicotina/toxicidade , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Receptores Colinérgicos/metabolismo , Receptores de Serotonina/metabolismo , Animais , Benzo(a)pireno/administração & dosagem , Encéfalo/embriologia , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Fumar Cigarros/efeitos adversos , Sinergismo Farmacológico , Feminino , Masculino , Nicotina/administração & dosagem , Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Ratos Sprague-Dawley
14.
Neurotoxicology ; 68: 81-87, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30036564

RESUMO

Tobacco exposure during development leads to neurobehavioral dysfunction in children, even when exposure is limited to secondhand smoke. We have previously shown in rats that developmental exposure to tobacco smoke extract (TSE), at levels mimicking secondhand smoke, starting preconception and extending throughout gestation, evoked subsequent locomotor hyperactivity and cognitive impairment. These effects were greater than those caused by equivalent exposures to nicotine alone, implying that other agents in tobacco smoke contributed to the adverse behavioral effects. In the present study, we examined the critical developmental windows of vulnerability for these effects, restricting TSE administration (0.2 mg/kg/day nicotine equivalent, or DMSO vehicle, delivered by subcutaneously-implanted pumps) to three distinct 10 day periods: the 10 days preceding mating, the first 10 days of gestation (early gestation), or the second 10 days of gestation (late gestation). The principal behavioral effects revealed a critical developmental window of vulnerability, as well as sex selectivity. Late gestational TSE exposure significantly increased errors in the initial training on the radial-arm maze in female offspring, whereas no effects were seen in males exposed during late gestation, or with either sex in the other exposure windows. In attentional testing with the visual signal detection test, male offspring exposed to TSE during early or late gestation showed hypervigilance during low-motivating conditions. These results demonstrate that gestational TSE exposure causes persistent behavioral effects that are dependent on the developmental window in which exposure occurs. The fact that effects were seen at TSE levels modeling secondhand smoke, emphasizes the need for decreasing involuntary tobacco smoke exposure, particularly during pregnancy.


Assuntos
Comportamento Animal/efeitos dos fármacos , Nicotiana/toxicidade , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Animais , Comportamento de Escolha/efeitos dos fármacos , Comportamento Exploratório/efeitos dos fármacos , Feminino , Masculino , Atividade Motora/efeitos dos fármacos , Gravidez , Ratos Sprague-Dawley , Poluição por Fumaça de Tabaco
15.
Toxicology ; 408: 11-21, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29935188

RESUMO

Glucocorticoids are given in preterm labor to prevent respiratory distress but these agents evoke neurobehavioral deficits in association with reduced brain region volumes. To determine whether the neurodevelopmental effects are distinct from growth impairment, we gave developing rats dexamethasone at doses below or within the therapeutic range (0.05, 0.2 or 0.8 mg/kg) at different stages: gestational days (GD) 17-19, postnatal days (PN) 1-3 or PN7-9. In adolescence and adulthood, we assessed the impact on noradrenergic systems in multiple brain regions, comparing the effects to those on somatic growth or on brain region growth. Somatic growth was reduced with exposure in all three stages, with greater sensitivity for the postnatal regimens; brain region growth was impaired to a lesser extent. Norepinephrine content and concentration were reduced depending on the treatment regimen, with a rank order of deficits of PN7-9 > PN1-3 > GD17-19. However, brain growth impairment did not parallel reduced norepinephrine content in magnitude, dose threshold, sex or regional selectivity, or temporal pattern, and even when corrected for reduced brain region weights (norepinephrine per g tissue), the dexamethasone-exposed animals showed subnormal values. Regression analysis showed that somatic growth impairment accounted for an insubstantial amount of the reduction in norepinephrine content, and brain growth impairment accounted for only 12%, whereas specific effects on norepinephrine accounted for most of the effect. The adverse effects of dexamethasone on noradrenergic system development are not simply related to impaired somatic or brain region growth, but rather include specific targeting of neurodifferentiation.


Assuntos
Neurônios Adrenérgicos/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Dexametasona/toxicidade , Glucocorticoides/toxicidade , Neurogênese/efeitos dos fármacos , Norepinefrina/metabolismo , Efeitos Tardios da Exposição Pré-Natal , Neurônios Adrenérgicos/metabolismo , Fatores Etários , Animais , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Relação Dose-Resposta a Droga , Feminino , Idade Gestacional , Masculino , Gravidez , Ratos Sprague-Dawley , Fatores Sexuais
16.
Toxicology ; 400-401: 57-64, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29524569

RESUMO

Terbutaline and dexamethasone are used in the management of preterm labor, often for durations of treatment exceeding those recommended, and both have been implicated in increased risk of neurodevelopmental disorders. We used a variety of cell models to establish the critical stages at which neurodifferentiation is vulnerable to these agents and to determine whether combined exposures produce a worsened outcome. Terbutaline selectively promoted the initial emergence of glia from embryonic neural stem cells (NSCs). The target for terbutaline shifted with developmental stage: at later developmental stages modeled with C6 and PC12 cells, terbutaline had little effect on glial differentiation (C6 cells) but impaired the differentiation of neuronotypic PC12 cells into neurotransmitter phenotypes. In contrast to the specificity shown by terbutaline, dexamethasone affected both neuronal and glial differentiation at all stages, impairing the emergence of both cell types in NSCs but with a much greater impairment for glia. At later stages, dexamethasone promoted glial cell differentiation (C6 cells), while shifting neuronal cell differentiation so as to distort the balance of neurotransmitter phenotypes (PC12 cells). Finally, terbutaline and dexamethasone interacted synergistically at the level of late stage glial cell differentiation, with dexamethasone boosting the ability of terbutaline to enhance indices of glial cell growth and neurite formation while producing further decrements in glial cell numbers. Our results support the conclusion that terbutaline and dexamethasone are directly-acting neuroteratogens, and further indicate the potential for their combined use in preterm labor to worsen neurodevelopmental outcomes.


Assuntos
Dexametasona/toxicidade , Neuroglia/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Síndromes Neurotóxicas , Trabalho de Parto Prematuro , Terbutalina/toxicidade , Agonistas de Receptores Adrenérgicos beta 2/administração & dosagem , Agonistas de Receptores Adrenérgicos beta 2/toxicidade , Animais , Diferenciação Celular/efeitos dos fármacos , Dexametasona/administração & dosagem , Sinergismo Farmacológico , Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Embrionárias/patologia , Feminino , Glucocorticoides/administração & dosagem , Glucocorticoides/toxicidade , Neuroglia/patologia , Neurônios/patologia , Síndromes Neurotóxicas/etiologia , Síndromes Neurotóxicas/patologia , Trabalho de Parto Prematuro/tratamento farmacológico , Células PC12 , Gravidez , Ratos , Terbutalina/administração & dosagem
17.
Toxicology ; 390: 32-42, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28851516

RESUMO

In addition to their activity as endocrine disruptors, brominated and organophosphate flame retardants are suspected to be developmental neurotoxicants, although identifying their specific mechanisms for that activity has been elusive. In the current study, we evaluated the effects of several flame retardants on neurodifferentiation using two in vitro models that assess distinct "decision nodes" in neural cell development: embryonic rat neural stem cells (NSCs), which evaluate the origination of neurons and glia from precursors, and rat neuronotypic PC12 cells, which characterize a later stage where cells committed to a neuronal phenotype undergo neurite outgrowth and neurotransmitter specification. In NSCs, both brominated and organophosphate flame retardants diverted the phenotype in favor of glia and away from formation of neurons, leading to an increased glia/neuron ratio, a common hallmark of the in vivo effects of neurotoxicants. For this early decision node, the brominated flame retardants were far more potent than the organophosphates. In PC12 cells, the brominated flame retardants were far less effective, whereas tris (1,3-dichloro-2-propyl) phosphate, an organophosphate, was more effective. Thus, the two classes of flame retardants differentially impact the two distinct vulnerable periods of neurodifferentiation. Furthermore, the effects on neurodifferentiation were separable from outright cytotoxicity, an important requirement in establishing a specific effect of these agents on neural cell development. These results reinforce the likelihood that flame retardants act as developmental neurotoxicants via direct effects on neural cell differentiation, over and above other activities that can impact nervous system development, such as endocrine disruption.


Assuntos
Células-Tronco Embrionárias/efeitos dos fármacos , Retardadores de Chama/toxicidade , Éteres Difenil Halogenados/toxicidade , Células-Tronco Neurais/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Síndromes Neurotóxicas/etiologia , Compostos Organofosforados/toxicidade , Bifenil Polibromatos/toxicidade , Animais , Linhagem da Célula , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Células-Tronco Embrionárias/patologia , Células-Tronco Neurais/patologia , Neuroglia/efeitos dos fármacos , Neuroglia/patologia , Síndromes Neurotóxicas/patologia , Células PC12 , Fenótipo , Ratos , Medição de Risco
18.
Brain Res Bull ; 130: 268-273, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28235599

RESUMO

Organophosphate pesticides elicit developmental neurotoxicity through mechanisms over and above their shared property as cholinesterase inhibitors. We compared the consequences of neonatal exposure (postnatal days PN1-4) to diazinon or parathion on development of norepinephrine systems in rat brain, using treatments designed to produce equivalent effects on cholinesterase, straddling the threshold for barely-detectable inhibition. Norepinephrine levels were measured throughout development from the immediate posttreatment period (PN5), to early adolescence (PN30), young adulthood (PN60) and full adulthood (PN100); we assessed multiple brain regions containing all the major noradrenergic synaptic projections. Diazinon elicited a significant overall deficit of norepinephrine, whereas parathion produced a net increase. The effects were not immediately apparent (PN5) but rather emerged over the course of development, indicating that the organophosphate effects represent alteration of the trajectory of development, not just continuance of an initial injury. There were no comparable effects on ß-adrenergic receptors, indicating that the presynaptic changes were not an adaptation to an underlying, primary effect on postsynaptic receptor signaling. Because we used the cholinesterase inhibition benchmark, the absolute dose of diazinon was much higher than that of parathion, since the latter is a more potent cholinesterase inhibitor. Our results are consistent with the growing evidence that the various organophosphates can differ in their impact on brain development and that consequently, the cholinesterase benchmark is an inadequate predictor of adverse neurodevelopmental effects.


Assuntos
Encéfalo/efeitos dos fármacos , Inibidores da Colinesterase , Diazinon/toxicidade , Norepinefrina/metabolismo , Paration/toxicidade , Animais , Animais Recém-Nascidos , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Inibidores da Colinesterase/toxicidade , Feminino , Inseticidas/toxicidade , Masculino , Ratos Sprague-Dawley
19.
Toxicology ; 377: 49-56, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28049045

RESUMO

In addition to their carcinogenic activity, polycyclic aromatic hydrocarbons (PAHs) are suspected to be developmental neurotoxicants. We evaluated the effects of PAHs with two in vitro models that assess distinct "decision nodes" in neurodifferentiation: neuronotypic PC12 cells, which characterize the transition from cell replication to neurodifferentiation, neurite outgrowth and neurotransmitter specification; and embryonic neural stem cells (NSCs), which evaluate the origination of neurons and glia from precursors. We compared an environmentally-derived PAH mixture from a Superfund contamination site (Elizabeth River Sediment Extract, ERSE) to those of a single PAH, benzo[a]pyrene (BaP). In PC12 cells, BaP impaired the transition from cell replication to neurodifferentiation, resulting in higher numbers of cells, but with reduced cell size and deficits in all indices of neuronal features (neurite formation, development of dopamine and acetylcholine phenotypes). ERSE was far less effective, causing only modest changes in cell numbers and size and no impairment of neurite formation or neurotransmitter specification; in fact, ERSE evoked a slight increase in emergence of the acetylcholine phenotype. In the NSC model, this relationship was entirely reversed, with far greater sensitivity to ERSE than to BaP. Furthermore, ERSE, but not BaP, enhanced NSC differentiation into neurons, whereas both ERSE and BaP suppressed the glial phenotype. Our studies provide a cause-and-effect relationship for the observed association of developmental PAH exposure to behavioral deficits. Further, PAH sensitivity occurs over developmental stages corresponding to rudimentary brain formation through terminal neurodifferentiation, suggesting that vulnerability likely extends throughout fetal brain development and into early childhood.


Assuntos
Benzo(a)pireno/toxicidade , Células-Tronco Embrionárias/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Células-Tronco Neurais/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Animais , Células Cultivadas , Células-Tronco Embrionárias/fisiologia , Células-Tronco Neurais/fisiologia , Neurogênese/fisiologia , Células PC12 , Ratos
20.
Toxicol Sci ; 155(1): 75-84, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27633979

RESUMO

Secondhand tobacco smoke exposure in pregnancy increases the risk of neurodevelopmental disorders. We evaluated in rats whether there is a critical period during which tobacco smoke extract (TSE) affects the development of acetylcholine and serotonin systems, prominent targets for adverse effects of nicotine and tobacco smoke. We simulated secondhand smoke exposure by administering TSE so as to produce nicotine concentrations one-tenth those in active smoking, with 3 distinct, 10-day windows: premating, early gestation or late gestation. We conducted longitudinal evaluations in multiple brain regions, starting in early adolescence (postnatal day 30) and continued to full adulthood (day 150). TSE exposure in any of the 3 windows impaired presynaptic cholinergic activity, exacerbated by a decrement in nicotinic cholinergic receptor concentrations. Although the adverse effects were seen for all 3 treatment windows, there was a distinct progression, with lowest sensitivity for premating exposure and higher sensitivity for gestational exposures. Serotonin receptors were also reduced by TSE exposure with the same profile: little effect with premating exposure, intermediate effect with early gestational exposure and large effect with late gestational exposure. As serotonergic circuits can offset the neurobehavioral impact of cholinergic deficits, these receptor changes were maladaptive. Thus, there is no single 'critical period' for effects of low-level tobacco smoke but there is differential sensitivity dependent upon the developmental stage at the time of exposure. Our findings reinforce the need to avoid secondhand smoke exposure not only during pregnancy, but also in the period prior to conception, or generally for women of childbearing age.


Assuntos
Sistema Nervoso/efeitos dos fármacos , Nicotiana , Fumaça/efeitos adversos , Animais , Feminino , Gravidez , Ratos , Receptores de Serotonina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA