Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Chem Neurosci ; 15(17): 3181-3201, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39158934

RESUMO

In the pathogenesis of Alzheimer's disease, the overexpression of glycogen synthase kinase-3ß (GSK-3ß) stands out due to its multifaced nature, as it contributes to the promotion of amyloid ß and tau protein accumulation, as well as neuroinflammatory processes. Therefore, in the present study, we have designed, synthesized, and evaluated a new series of GSK-3ß inhibitors based on the N-(pyridin-2-yl)cyclopropanecarboxamide scaffold. We identified compound 36, demonstrating an IC50 of 70 nM against GSK-3ß. Subsequently, through crystallography studies and quantum mechanical analysis, we elucidated its binding mode and identified the structural features crucial for interactions with the active site of GSK-3ß, thereby understanding its inhibitory potency. Compound 36 was effective in the cellular model of hyperphosphorylated tau-induced neurodegeneration, where it restored cell viability after okadaic acid treatment and showed anti-inflammatory activity in the LPS model, significantly reducing NO, IL-6, and TNF-α release. In ADME-tox in vitro studies, we confirmed the beneficial profile of 36, including high permeability in PAMPA (Pe equals 9.4) and high metabolic stability in HLMs as well as lack of significant interactions with isoforms of the CYP enzymes and lack of considerable cytotoxicity on selected cell lines (IC50 > 100 µM on HT-22 cells and 89.3 µM on BV-2 cells). Based on promising pharmacological activities and favorable ADME-tox properties, compound 36 may be considered a promising candidate for in vivo research as well as constitute a reliable starting point for further studies.


Assuntos
Anti-Inflamatórios , Glicogênio Sintase Quinase 3 beta , Fármacos Neuroprotetores , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/química , Glicogênio Sintase Quinase 3 beta/metabolismo , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/síntese química , Anti-Inflamatórios/química , Humanos , Camundongos , Sobrevivência Celular/efeitos dos fármacos , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/metabolismo , Proteínas tau/metabolismo
2.
Molecules ; 29(11)2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38893493

RESUMO

GSK-3ß, IKK-ß, and ROCK-1 kinases are implicated in the pathomechanism of Alzheimer's disease due to their involvement in the misfolding and accumulation of amyloid ß (Aß) and tau proteins, as well as inflammatory processes. Among these kinases, GSK-3ß plays the most crucial role. In this study, we present compound 62, a novel, remarkably potent, competitive GSK-3ß inhibitor (IC50 = 8 nM, Ki = 2 nM) that also exhibits additional ROCK-1 inhibitory activity (IC50 = 2.3 µM) and demonstrates anti-inflammatory and neuroprotective properties. Compound 62 effectively suppresses the production of nitric oxide (NO) and pro-inflammatory cytokines in the lipopolysaccharide-induced model of inflammation in the microglial BV-2 cell line. Furthermore, it shows neuroprotective effects in an okadaic-acid-induced tau hyperphosphorylation cell model of neurodegeneration. The compound also demonstrates the potential for further development, characterized by its chemical and metabolic stability in mouse microsomes and fair solubility.


Assuntos
Doença de Alzheimer , Glicogênio Sintase Quinase 3 beta , Quinase I-kappa B , Tiazóis , Quinases Associadas a rho , Proteínas tau , Proteínas tau/metabolismo , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Glicogênio Sintase Quinase 3 beta/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Animais , Tiazóis/farmacologia , Tiazóis/química , Humanos , Quinases Associadas a rho/antagonistas & inibidores , Quinases Associadas a rho/metabolismo , Camundongos , Quinase I-kappa B/metabolismo , Quinase I-kappa B/antagonistas & inibidores , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/química , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Linhagem Celular , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Microglia/efeitos dos fármacos , Microglia/metabolismo , Óxido Nítrico/metabolismo , Lipopolissacarídeos , Agregados Proteicos/efeitos dos fármacos , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/metabolismo
3.
Sci Rep ; 13(1): 18114, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37872245

RESUMO

The selective inhibition of kinases from the diabetic kinome is known to promote the regeneration of beta cells and provide an opportunity for the curative treatment of diabetes. The effect can be achieved by carefully tailoring the selectivity of inhibitor toward a particular kinase, especially DYRK1A, previously associated with Down syndrome and Alzheimer's disease. Recently DYRK1A inhibition has been shown to promote both insulin secretion and beta cells proliferation. Here, we show that commonly available flavones are effective inhibitors of DYRK1A. The observed biochemical activity of flavone compounds is confirmed by crystal structures solved at 2.06 Å and 2.32 Å resolution, deciphering the way inhibitors bind in the ATP-binding pocket of the kinase, which is driven by the arrangement of hydroxyl moieties. We also demonstrate antidiabetic properties of these biomolecules and prove that they could be further improved by therapy combined with TGF-ß inhibitors. Our data will allow future structure-based optimization of the presented scaffolds toward potent, bioavailable and selective anti-diabetic drugs.


Assuntos
Doença de Alzheimer , Flavonas , Humanos , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Flavonas/farmacologia , Flavonas/uso terapêutico , Doença de Alzheimer/tratamento farmacológico , Proliferação de Células , Inibidores de Proteínas Quinases/uso terapêutico
4.
Bioorg Med Chem ; 88-89: 117333, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37236021

RESUMO

Butyrylcholinesterase (BuChE) and amyloid ß (Aß) aggregation remain important biological target and mechanism in the search for effective treatment of Alzheimer's disease. Simultaneous inhibition thereof by the application of multifunctional agents may lead to improvement in terms of symptoms and causes of the disease. Here, we present the rational design, synthesis, biological evaluation and molecular modelling studies of novel series of fluorene-based BuChE and Aß inhibitors with drug-like characteristics and advantageous Central Nervous System Multiparameter Optimization scores. Among 17 synthesized and tested compounds, we identified 22 as the most potent eqBuChE inhibitor with IC50 of 38 nM and 37.4% of Aß aggregation inhibition at 10 µM. Based on molecular modelling studies, including molecular dynamics, we determined the binding mode of the compounds within BuChE and explained the differences in the activity of the two enantiomers of compound 22. A novel series of fluorenyl compounds meeting the drug-likeness criteria seems to be a promising starting point for further development as anti-Alzheimer agents.


Assuntos
Doença de Alzheimer , Butirilcolinesterase , Humanos , Butirilcolinesterase/metabolismo , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/uso terapêutico , Relação Estrutura-Atividade , Simulação de Dinâmica Molecular , Acetilcolinesterase/metabolismo , Desenho de Fármacos , Estrutura Molecular , Simulação de Acoplamento Molecular
5.
Int J Mol Sci ; 23(16)2022 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-36012707

RESUMO

Neurodegeneration leading to Alzheimer's disease results from a complex interplay of a variety of processes including misfolding and aggregation of amyloid beta and tau proteins, neuroinflammation or oxidative stress. Therefore, to address more than one of these, drug discovery programmes focus on the development of multifunctional ligands, preferably with disease-modifying and symptoms-reducing potential. Following this idea, herein we present the design and synthesis of multifunctional ligands and biological evaluation of their 5-HT6 receptor affinity (radioligand binding assay), cholinesterase inhibitory activity (spectroscopic Ellman's assay), antioxidant activity (ABTS assay) and metal-chelating properties, as well as a preliminary ADMET properties evaluation. Based on the results we selected compound 14 as a well-balanced and potent 5-HT6 receptor ligand (Ki = 22 nM) and human BuChE inhibitor (IC50 = 16 nM) with antioxidant potential expressed as a reduction of ABTS radicals by 35% (150 µM). The study also revealed additional metal-chelating properties of compounds 15 and 18. The presented compounds modulating Alzheimer's disease-related processes might be further developed as multifunctional ligands against the disease.


Assuntos
Doença de Alzheimer , Inibidores da Colinesterase , Acetilcolinesterase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/metabolismo , Antioxidantes/química , Antioxidantes/farmacologia , Butirilcolinesterase/metabolismo , Quelantes/química , Quelantes/farmacologia , Inibidores da Colinesterase/química , Inibidores da Colinesterase/farmacologia , Desenho de Fármacos , Humanos , Ligantes , Receptores de Serotonina/metabolismo , Serotonina , Relação Estrutura-Atividade
6.
Target Oncol ; 16(4): 415-424, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34110559

RESUMO

BACKGROUND: For research with human participants to be ethical, risk must be in a favorable balance with potential benefits. Little is known about the risk/benefit ratio for pediatric cancer phase II trials testing targeted therapies. OBJECTIVE: Our aim was to conduct a systematic review of preliminary efficacy and safety profiles of phase II targeted therapy clinical trials in pediatric oncology. METHODS: Our protocol was prospectively registered in PROSPERO (CRD42020146491). We searched EMBASE and PubMed for phase II pediatric cancer trials testing targeted agents. We included solid and hematological malignancy studies published between 1 January, 2015 and 27 February, 2020. We measured risk using drug-related grade 3 or higher adverse events, and benefit by response rates. When possible, data were meta-analyzed. All statistical tests were two-sided. RESULTS: We identified 34 clinical trials (1202 patients) that met our eligibility criteria. The pooled overall response rate was 24.4% (95% confidence interval [CI] 14.5-34.2) and was lower in solid tumors, 6.4% (95% CI 3.2-9.6), compared with hematological malignancies, 55.1% (95% CI 35.9-74.3); p < 0.001. The overall fatal drug-related (grade 5) adverse event rate was 1.6% (95% CI 0.6-2.5), and the average drug-related grade 3/4 adverse event rate per person was 0.66 (95% CI 0.55-0.78). CONCLUSIONS: We provide an estimate for the risks and benefits of participation in pediatric phase II cancer trials. These data may be used as an empirical basis for informed communication about benefits and burdens in pediatric oncology research.


Assuntos
Antineoplásicos/efeitos adversos , Antineoplásicos/uso terapêutico , Oncologia , Neoplasias/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA