Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
J Neuroeng Rehabil ; 21(1): 11, 2024 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245730

RESUMO

BACKGROUND: The ability to walk is an important factor in quality of life after stroke. Co-activation of hip adductors and knee extensors has been shown to correlate with gait impairment. We have shown previously that training with a myoelectric interface for neurorehabilitation (MINT) can reduce abnormal muscle co-activation in the arms of stroke survivors. METHODS: Here, we extend MINT conditioning to stroke survivors with leg impairment. The aim of this pilot study was to assess the safety and feasibility of using MINT to reduce abnormal co-activation between hip adductors and knee extensors and assess any effects on gait. Nine stroke survivors with moderate to severe gait impairment received 6 h of MINT conditioning over six sessions, either in the laboratory or at home. RESULTS: MINT participants completed a mean of 159 repetitions per session without any adverse events. Further, participants learned to isolate their muscles effectively, resulting in a mean reduction of co-activation of 70% compared to baseline. Moreover, gait speed increased by a mean of 0.15 m/s, more than the minimum clinically important difference. Knee flexion angle increased substantially, and hip circumduction decreased. CONCLUSION: MINT conditioning is safe, feasible at home, and enables reduction of co-activation in the leg. Further investigation of MINT's potential to improve leg movement and function after stroke is warranted. Abnormal co-activation of hip adductors and knee extensors may contribute to impaired gait after stroke. Trial registration This study was registered at ClinicalTrials.gov (NCT03401762, Registered 15 January 2018, https://clinicaltrials.gov/study/NCT03401762?tab=history&a=4 ).


Assuntos
Transtornos Neurológicos da Marcha , Reabilitação Neurológica , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Humanos , Marcha/fisiologia , Transtornos Neurológicos da Marcha/etiologia , Perna (Membro) , Músculo Esquelético/fisiologia , Projetos Piloto , Qualidade de Vida , Acidente Vascular Cerebral/complicações , Reabilitação do Acidente Vascular Cerebral/métodos
2.
eNeuro ; 11(2)2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38242691

RESUMO

Planning and executing motor behaviors requires coordinated neural activity among multiple cortical and subcortical regions of the brain. Phase-amplitude coupling between the high-gamma band amplitude and the phase of low frequency oscillations (theta, alpha, beta) has been proposed to reflect neural communication, as has synchronization of low-gamma oscillations. However, coupling between low-gamma and high-gamma bands has not been investigated. Here, we measured phase-amplitude coupling between low- and high-gamma in monkeys performing a reaching task and in humans either performing finger-flexion or word-reading tasks. We found significant coupling between low-gamma phase and high-gamma amplitude in multiple sensorimotor and premotor cortices of both species during all tasks. This coupling modulated with the onset of movement. These findings suggest that interactions between the low and high gamma bands are markers of network dynamics related to movement and speech generation.


Assuntos
Córtex Motor , Fala , Humanos , Movimento , Encéfalo
3.
Res Sq ; 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37886579

RESUMO

Background: The ability to walk is an important factor in quality of life after stroke. Co-activation of hip adductors and knee extensors has been shown to correlate with gait impairment. We have shown previously that training with a myoelectric interface for neurorehabilitation (MINT) can reduce abnormal muscle co-activation in the arms of stroke survivors. Methods: Here, we extend MINT conditioning to stroke survivors with leg impairment. The aim of this pilot study was to assess the safety and feasibility of using MINT to reduce abnormal co-activation between hip adductors and knee extensors and assess any effects on gait. Nine stroke survivors with moderate to severe gait impairment received six hours of MINT conditioning over six sessions, either in the laboratory or at home. Results: MINT participants completed a mean of 159 repetitions per session without any adverse events. Further, participants learned to isolate their muscles effectively, resulting in a mean reduction of co-activation of 70% compared to baseline. Moreover, gait speed increased by a mean of 0.15 m/s, more than the minimum clinically important difference. Knee flexion angle increased substantially, and hip circumduction decreased. Conclusion: MINT conditioning is safe, feasible at home, and enables reduction of co-activation in the leg. Further investigation of MINT's potential to improve leg movement and function after stroke is warranted. Abnormal co-activation of hip adductors and knee extensors may contribute to impaired gait after stroke. Trial registration: This study was registered at ClinicalTrials.gov (NCT03401762, Registered 15 January 2018, https://clinicaltrials.gov/study/NCT03401762?tab=history&a=4).

4.
Ann Neurol ; 94(1): 146-159, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36966460

RESUMO

OBJECTIVE: To characterize neurologic manifestations in post-hospitalization Neuro-PASC (PNP) and non-hospitalized Neuro-PASC (NNP) patients. METHODS: Prospective study of the first 100 consecutive PNP and 500 NNP patients evaluated at a Neuro-COVID-19 clinic between 5/2020 and 8/2021. RESULTS: PNP were older than NNP patients (mean 53.9 vs 44.9 y; p < 0.0001) with a higher prevalence of pre-existing comorbidities. An average 6.8 months from onset, the main neurologic symptoms were "brain fog" (81.2%), headache (70.3%), and dizziness (49.5%) with only anosmia, dysgeusia and myalgias being more frequent in the NNP compared to the PNP group (59 vs 39%, 57.6 vs 39% and 50.4 vs 33%, all p < 0.003). Moreover, 85.8% of patients experienced fatigue. PNP more frequently had an abnormal neurologic exam than NNP patients (62.2 vs 37%, p < 0.0001). Both groups had impaired quality of life in cognitive, fatigue, sleep, anxiety, and depression domains. PNP patients performed worse on processing speed, attention, and working memory tasks than NNP patients (T-score 41.5 vs 55, 42.5 vs 47 and 45.5 vs 49, all p < 0.001) and a US normative population. NNP patients had lower results in attention task only. Subjective impression of cognitive ability correlated with cognitive test results in NNP but not in PNP patients. INTERPRETATION: PNP and NNP patients both experience persistent neurologic symptoms affecting their quality of life. However, they harbor significant differences in demographics, comorbidities, neurologic symptoms and findings, as well as pattern of cognitive dysfunction. Such differences suggest distinct etiologies of Neuro-PASC in these populations warranting targeted interventions. ANN NEUROL 2023;94:146-159.


Assuntos
COVID-19 , Síndrome de COVID-19 Pós-Aguda , Humanos , COVID-19/complicações , Estudos Prospectivos , Qualidade de Vida , Fadiga/etiologia
5.
bioRxiv ; 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36824850

RESUMO

Planning and executing motor behaviors requires coordinated neural activity among multiple cortical and subcortical regions of the brain. Phase-amplitude coupling between the high-gamma band amplitude and the phase of low frequency oscillations (theta, alpha, beta) has been proposed to reflect neural communication, as has synchronization of low-gamma oscillations. However, coupling between low-gamma and high-gamma bands has not been investigated. Here, we measured phase-amplitude coupling between low- and high-gamma in monkeys performing a reaching task and in humans either performing finger movements or speaking words aloud. We found significant coupling between low-gamma phase and high-gamma amplitude in multiple sensorimotor and premotor cortices of both species during all tasks. This coupling modulated with the onset of movement. These findings suggest that interactions between the low and high gamma bands are markers of network dynamics related to movement and speech generation.

6.
J Neuroeng Rehabil ; 19(1): 67, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35778757

RESUMO

BACKGROUND: Abnormal patterns of muscle co-activation contribute to impaired movement after stroke. Previously, we developed a myoelectric computer interface (MyoCI) training paradigm to improve stroke-induced arm motor impairment by reducing the abnormal co-activation of arm muscle pairs. However, it is unclear to what extent the paradigm induced changes in the overall intermuscular coordination in the arm, as opposed to changing just the muscles trained with the MyoCI. This study examined the intermuscular coordination patterns of thirty-two stroke survivors who participated in 6 weeks of MyoCI training. METHODS: We used non-negative matrix factorization to identify the arm muscle synergies (coordinated patterns of muscle activity) during a reaching task before and after the training. We examined the extent to which synergies changed as the training reduced motor impairment. In addition, we introduced a new synergy analysis metric, disparity index (DI), to capture the changes in the individual muscle weights within a synergy. RESULTS: There was no consistent pattern of change in the number of synergies across the subjects after the training. The composition of muscle synergies, calculated using a traditional synergy similarity metric, also did not change after the training. However, the disparity of muscle weights within synergies increased after the training in the participants who responded to MyoCI training-that is, the specific muscles that the MyoCI was targeting became less correlated within a synergy. This trend was not observed in participants who did not respond to the training. CONCLUSIONS: These findings suggest that MyoCI training reduced arm impairment by decoupling only the muscles trained while leaving other muscles relatively unaffected. This suggests that, even after injury, the nervous system is capable of motor learning on a highly fractionated level. It also suggests that MyoCI training can do what it was designed to do-enable stroke survivors to reduce abnormal co-activation in targeted muscles. Trial registration This study was registered at ClinicalTrials.gov (NCT03579992, Registered 09 July 2018-Retrospectively registered, https://clinicaltrials.gov/ct2/show/NCT03579992?term=NCT03579992&draw=2&rank=1 ).


Assuntos
Músculos , Acidente Vascular Cerebral , Humanos , Movimento , Sobreviventes , Extremidade Superior
7.
J Neural Eng ; 19(3)2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35576911

RESUMO

Objective.Brain injury is the leading cause of long-term disability worldwide, often resulting in impaired hand function. Brain-machine interfaces (BMIs) offer a potential way to improve hand function. BMIs often target replacing lost function, but may also be employed in neurorehabilitation (nrBMI) by facilitating neural plasticity and functional recovery. Here, we report a novel nrBMI capable of acquiring high-γ(70-115 Hz) information through a unique post-traumatic brain injury (TBI) hemicraniectomy window model, and delivering sensory feedback that is synchronized with, and proportional to, intended grasp force.Approach. We developed the nrBMI to use electroencephalogram recorded over a hemicraniectomy (hEEG) in individuals with TBI. The nrBMI empowered users to exert continuous, proportional control of applied force, and provided continuous force feedback. We report the results of an initial testing group of three human participants with TBI, along with a control group of three skull- and motor-intact volunteers.Main results. All participants controlled the nrBMI successfully, with high initial success rates (2 of 6 participants) or performance that improved over time (4 of 6 participants). We observed high-γmodulation with force intent in hEEG but not skull-intact EEG. Most significantly, we found that high-γcontrol significantly improved the timing synchronization between neural modulation onset and nrBMI output/haptic feedback (compared to low-frequency nrBMI control).Significance. These proof-of-concept results show that high-γnrBMIs can be used by individuals with impaired ability to control force (without immediately resorting to invasive signals like electrocorticography). Of note, the nrBMI includes a parameter to change the fraction of control shared between decoded intent and volitional force, to adjust for recovery progress. The improved synchrony between neural modulations and force control for high-γsignals is potentially important for maximizing the ability of nrBMIs to induce plasticity in neural circuits. Inducing plasticity is critical to functional recovery after brain injury.


Assuntos
Lesões Encefálicas , Interfaces Cérebro-Computador , Reabilitação Neurológica , Eletroencefalografia/métodos , Retroalimentação , Humanos , Reabilitação Neurológica/métodos
8.
Sci Rep ; 11(1): 22491, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34795346

RESUMO

Arm movement kinematics may provide a more sensitive way to assess neurorehabilitation outcomes than existing metrics. However, measuring arm kinematics in people with stroke can be challenging for traditional optical tracking systems due to non-ideal environments, expense, and difficulty performing required calibration. Here, we present two open-source methods, one using inertial measurement units (IMUs) and another using virtual reality (Vive) sensors, for accurate measurements of wrist position with respect to the shoulder during reaching movements in people with stroke. We assessed the accuracy of each method during a 3D reaching task. We also demonstrated each method's ability to track two metrics derived from kinematics-sweep area and smoothness-in people with chronic stroke. We computed correlation coefficients between the kinematics estimated by each method when appropriate. Compared to a traditional optical tracking system, both methods accurately tracked the wrist during reaching, with mean signed errors of 0.09 ± 1.81 cm and 0.48 ± 1.58 cm for the IMUs and Vive, respectively. Furthermore, both methods' estimated kinematics were highly correlated with each other (p < 0.01). By using relatively inexpensive wearable sensors, these methods may be useful for developing kinematic metrics to evaluate stroke rehabilitation outcomes in both laboratory and clinical environments.


Assuntos
Acidente Vascular Cerebral/fisiopatologia , Dispositivos Eletrônicos Vestíveis , Articulação do Punho/fisiopatologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Fenômenos Biomecânicos , Engenharia Biomédica/métodos , Desenho de Equipamento , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Movimento , Reprodutibilidade dos Testes , Reabilitação do Acidente Vascular Cerebral , Punho
9.
J Neurosci ; 41(46): 9608-9616, 2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34663626

RESUMO

Memory reactivation during sleep reinforces various types of learning. Basic motor skills likely benefit from sleep. There is insufficient evidence, however, on whether memory reactivation during sleep contributes to learning how to execute a novel action. Here, we investigated motor learning in a myoelectric feedback task. Human male and female participants learned to control myoelectric activity in specific arm muscles to move a computer cursor to each of 16 locations. Each location was associated with a unique sound. Half of the sounds were played during slow-wave sleep to reactivate corresponding memories of muscle control. After sleep, movements cued during sleep were performed more quickly and efficiently than uncued movements. These results demonstrated that memory reactivation during sleep contributes to learning of action execution. We conclude that sleep supports learning novel actions, which also maps onto the learning required in certain neurorehabilitation procedures.SIGNIFICANCE STATEMENT Prior literature on motor learning has produced much evidence supporting a role for sleep but scant evidence on the execution component. This aspect of learning is critical for many complex skills that people value in their lives. Our results not only implicate sleep in skill learning but also pinpoint a benefit for motor execution using a method for modifying memory storage during sleep. We used targeted memory reactivation (TMR), whereby a stimulus that has been associated with learning is presented again during sleep to bring on a recapitulation of waking brain activity. Our demonstration that memory reactivation contributed to skilled performance may be relevant for neurorehabilitation as well as fields concerned with motor learning, such as kinesiology and physiology.


Assuntos
Memória/fisiologia , Destreza Motora/fisiologia , Reforço Psicológico , Sono/fisiologia , Adolescente , Adulto , Feminino , Humanos , Masculino , Adulto Jovem
10.
Ann Clin Transl Neurol ; 8(9): 1895-1905, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34415114

RESUMO

BACKGROUND: High-intensity occupational therapy can improve arm function after stroke, but many people lack access to such therapy. Home-based therapies could address this need, but they don't typically address abnormal muscle co-activation, an important aspect of arm impairment. An earlier study using lab-based, myoelectric computer interface game training enabled chronic stroke survivors to reduce abnormal co-activation and improve arm function. Here, we assess feasibility of doing this training at home using a novel, wearable, myoelectric interface for neurorehabilitation training (MINT) paradigm. OBJECTIVE: Assess tolerability and feasibility of home-based, high-dose MINT therapy in severely impaired chronic stroke survivors. METHODS: Twenty-three participants were instructed to train with the MINT and game for 90 min/day, 36 days over 6 weeks. We assessed feasibility using amount of time trained and game performance. We assessed tolerability (enjoyment and effort) using a customized version of the Intrinsic Motivation Inventory at the conclusion of training. RESULTS: Participants displayed high adherence to near-daily therapy at home (mean of 82 min/day of training; 96% trained at least 60 min/day) and enjoyed the therapy. Training performance improved and co-activation decreased with training. Although a substantial number of participants stopped training, most dropouts were due to reasons unrelated to the training paradigm itself. INTERPRETATION: Home-based therapy with MINT is feasible and tolerable in severely impaired stroke survivors. This affordable, enjoyable, and mobile health paradigm has potential to improve recovery from stroke in a variety of settings. Clinicaltrials.gov: NCT03401762.


Assuntos
Jogos Eletrônicos de Movimento , Avaliação de Processos e Resultados em Cuidados de Saúde , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral/terapia , Dispositivos Eletrônicos Vestíveis , Adulto , Idoso , Doença Crônica , Eletromiografia , Estudos de Viabilidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reabilitação do Acidente Vascular Cerebral/instrumentação , Reabilitação do Acidente Vascular Cerebral/métodos , Sobreviventes
11.
Front Neurosci ; 14: 599010, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33328870

RESUMO

Recent studies have shown the ability to record high-γ signals (80-160 Hz) in electroencephalogram (EEG) from traumatic brain injury (TBI) patients who have had hemicraniectomies. However, extraction of the movement-related high-γ remains challenging due to a confounding bandwidth overlap with surface electromyogram (EMG) artifacts related to facial and head movements. In our previous work, we described an augmented independent component analysis (ICA) approach for removal of EMG artifacts from EEG, and referred to as EMG Reduction by Adding Sources of EMG (ERASE). Here, we tested this algorithm on EEG recorded from six TBI patients with hemicraniectomies while they performed a thumb flexion task. ERASE removed a mean of 52 ± 12% (mean ± S.E.M) (maximum 73%) of EMG artifacts. In contrast, conventional ICA removed a mean of 27 ± 19% (mean ± S.E.M) of EMG artifacts from EEG. In particular, high-γ synchronization was significantly improved in the contralateral hand motor cortex area within the hemicraniectomy site after ERASE was applied. A more sophisticated measure of high-γ complexity is the fractal dimension (FD). Here, we computed the FD of EEG high-γ on each channel. Relative FD of high-γ was defined as that the FD in move state was subtracted by FD in idle state. We found relative FD of high-γ over hemicraniectomy after applying ERASE were strongly correlated to the amplitude of finger flexion force. Results showed that significant correlation coefficients across the electrodes related to thumb flexion averaged ~0.76, while the coefficients across the homologous electrodes in non-hemicraniectomy areas were nearly 0. After conventional ICA, a correlation between relative FD of high-γ and force remained high in both hemicraniectomy areas (up to 0.86) and non-hemicraniectomy areas (up to 0.81). Across all subjects, an average of 83% of electrodes significantly correlated with force was located in the hemicraniectomy areas after applying ERASE. After conventional ICA, only 19% of electrodes with significant correlations were located in the hemicraniectomy. These results indicated that the new approach isolated electrophysiological features during finger motor activation while selectively removing confounding EMG artifacts. This approach removed EMG artifacts that can contaminate high-gamma activity recorded over the hemicraniectomy.

12.
Nat Biomed Eng ; 4(10): 937-938, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33093668
13.
eNeuro ; 7(4)2020.
Artigo em Inglês | MEDLINE | ID: mdl-32769159

RESUMO

The ability to grasp and manipulate objects requires controlling both finger movement kinematics and isometric force in rapid succession. Previous work suggests that these behavioral modes are controlled separately, but it is unknown whether the cerebral cortex represents them differently. Here, we asked the question of how movement and force were represented cortically, when executed sequentially with the same finger. We recorded high-density electrocorticography (ECoG) from the motor and premotor cortices of seven human subjects performing a movement-force motor task. We decoded finger movement [0.7 ± 0.3 fractional variance accounted for (FVAF)] and force (0.7 ± 0.2 FVAF) with high accuracy, yet found different spatial representations. In addition, we used a state-of-the-art deep learning method to uncover smooth, repeatable trajectories through ECoG state space during the movement-force task. We also summarized ECoG across trials and participants by developing a new metric, the neural vector angle (NVA). Thus, state-space techniques can help to investigate broad cortical networks. Finally, we were able to classify the behavioral mode from neural signals with high accuracy (90 ± 6%). Thus, finger movement and force appear to have distinct representations in motor/premotor cortices. These results inform our understanding of the neural control of movement, as well as the design of grasp brain-machine interfaces (BMIs).


Assuntos
Interfaces Cérebro-Computador , Córtex Motor , Eletrocorticografia , Força da Mão , Humanos , Movimento
14.
Front Neurosci ; 14: 597941, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33584176

RESUMO

Electroencephalographic (EEG) recordings are often contaminated by electromyographic (EMG) artifacts, especially when recording during movement. Existing methods to remove EMG artifacts include independent component analysis (ICA), and other high-order statistical methods. However, these methods can not effectively remove most of EMG artifacts. Here, we proposed a modified ICA model for EMG artifacts removal in the EEG, which is called EMG Removal by Adding Sources of EMG (ERASE). In this new approach, additional channels of real EMG from neck and head muscles (reference artifacts) were added as inputs to ICA in order to "force" the most power from EMG artifacts into a few independent components (ICs). The ICs containing EMG artifacts (the "artifact ICs") were identified and rejected using an automated procedure. ERASE was validated first using both simulated and experimentally-recorded EEG and EMG. Simulation results showed ERASE removed EMG artifacts from EEG significantly more effectively than conventional ICA. Also, it had a low false positive rate and high sensitivity. Subsequently, EEG was collected from 8 healthy participants while they moved their hands to test the realistic efficacy of this approach. Results showed that ERASE successfully removed EMG artifacts (on average, about 75% of EMG artifacts were removed when using real EMGs as reference artifacts) while preserving the expected EEG features related to movement. We also tested the ERASE procedure using simulated EMGs as reference artifacts (about 63% of EMG artifacts removed). Compared to conventional ICA, ERASE removed on average 26% more EMG artifacts from EEG. These findings suggest that ERASE can achieve significant separation of EEG signal and EMG artifacts without a loss of the underlying EEG features. These results indicate that using additional real or simulated EMG sources can increase the effectiveness of ICA in removing EMG artifacts from EEG. Combined with automated artifact IC rejection, ERASE also minimizes potential user bias. Future work will focus on improving ERASE so that it can also be used in real-time applications.

15.
Front Neurosci ; 13: 1267, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31824257

RESUMO

Neural interfaces that directly produce intelligible speech from brain activity would allow people with severe impairment from neurological disorders to communicate more naturally. Here, we record neural population activity in motor, premotor and inferior frontal cortices during speech production using electrocorticography (ECoG) and show that ECoG signals alone can be used to generate intelligible speech output that can preserve conversational cues. To produce speech directly from neural data, we adapted a method from the field of speech synthesis called unit selection, in which units of speech are concatenated to form audible output. In our approach, which we call Brain-To-Speech, we chose subsequent units of speech based on the measured ECoG activity to generate audio waveforms directly from the neural recordings. Brain-To-Speech employed the user's own voice to generate speech that sounded very natural and included features such as prosody and accentuation. By investigating the brain areas involved in speech production separately, we found that speech motor cortex provided more information for the reconstruction process than the other cortical areas.

16.
IEEE Trans Neural Syst Rehabil Eng ; 27(7): 1467-1472, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31021800

RESUMO

Brain-machine interfaces (BMIs) translate brain signals into control signals for an external device, such as a computer cursor or robotic limb. These signals can be obtained either noninvasively or invasively. Invasive recordings, using electrocorticography (ECoG) or intracortical microelectrodes, provide higher bandwidth and more informative signals. Rehabilitative BMIs, which aim to drive plasticity in the brain to enhance recovery after brain injury, have almost exclusively used non-invasive recordings, such electroencephalography (EEG) or magnetoencephalography (MEG), which have limited bandwidth and information content. Invasive recordings provide more information and spatiotemporal resolution, but do incur risk, and thus are not usually investigated in people with stroke or traumatic brain injury (TBI). Here, in this paper, we describe a new BMI paradigm to investigate the use of higher frequency signals in brain-injured subjects without incurring significant risk. We recorded EEG in TBI subjects who required hemicraniectomies (removal of a part of the skull). EEG over the hemicraniectomy (hEEG) contained substantial information in the high gamma frequency range (65-115 Hz). Using this information, we decoded continuous finger flexion force with moderate to high accuracy (variance accounted for 0.06 to 0.52), which at best approaches that using epidural signals. These results indicate that people with hemicraniectomies can provide a useful resource for developing BMI therapies for the treatment of brain injury.


Assuntos
Lesões Encefálicas Traumáticas/cirurgia , Interfaces Cérebro-Computador , Craniectomia Descompressiva/métodos , Ritmo Gama , Adulto , Artefatos , Eletroencefalografia , Feminino , Dedos/inervação , Humanos , Magnetoencefalografia , Masculino , Contração Muscular , Desenho de Prótese , Desempenho Psicomotor
17.
Neurorehabil Neural Repair ; 33(4): 284-295, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30888251

RESUMO

BACKGROUND: Abnormal muscle co-activation contributes to impairment after stroke. We developed a myoelectric computer interface (MyoCI) training paradigm to reduce abnormal co-activation. MyoCI provides intuitive feedback about muscle activation patterns, enabling decoupling of these muscles. OBJECTIVE: To investigate tolerability and effects of MyoCI training of 3 muscle pairs on arm motor recovery after stroke, including effects of training dose and isometric versus movement-based training. METHODS: We randomized chronic stroke survivors with moderate-to-severe arm impairment to 3 groups. Two groups tested different doses of isometric MyoCI (60 vs 90 minutes), and one group tested MyoCI without arm restraint (90 minutes), over 6 weeks. Primary outcome was arm impairment (Fugl-Meyer Assessment). Secondary outcomes included function, spasticity, and elbow range-of-motion at weeks 6 and 10. RESULTS: Over all 32 subjects, MyoCI training of 3 muscle pairs significantly reduced impairment (Fugl-Meyer Assessment) by 3.3 ± 0.6 and 3.1 ± 0.7 ( P < 10-4) at weeks 6 and 10, respectively. Each group improved significantly from baseline; no significant differences were seen between groups. Participants' lab-based and home-based function also improved at weeks 6 and 10 ( P ≤ .01). Spasticity also decreased over all subjects, and elbow range-of-motion improved. Both moderately and severely impaired patients showed significant improvement. No participants had training-related adverse events. MyoCI reduced abnormal co-activation, which appeared to transfer to reaching in the movement group. CONCLUSIONS: MyoCI is a well-tolerated, novel rehabilitation tool that enables stroke survivors to reduce abnormal co-activation. It may reduce impairment and spasticity and improve arm function, even in severely impaired patients.


Assuntos
Braço , Biorretroalimentação Psicológica , Movimento , Reabilitação do Acidente Vascular Cerebral , Adulto , Idoso , Braço/fisiopatologia , Biorretroalimentação Psicológica/métodos , Fenômenos Biomecânicos , Doença Crônica , Computadores , Eletromiografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Espasticidade Muscular , Músculo Esquelético/fisiopatologia , Amplitude de Movimento Articular , Recuperação de Função Fisiológica , Acidente Vascular Cerebral/fisiopatologia , Reabilitação do Acidente Vascular Cerebral/métodos , Resultado do Tratamento , Interface Usuário-Computador , Jogos de Vídeo
18.
J Neural Eng ; 16(3): 036019, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30831567

RESUMO

OBJECTIVE: Direct synthesis of speech from neural signals could provide a fast and natural way of communication to people with neurological diseases. Invasively-measured brain activity (electrocorticography; ECoG) supplies the necessary temporal and spatial resolution to decode fast and complex processes such as speech production. A number of impressive advances in speech decoding using neural signals have been achieved in recent years, but the complex dynamics are still not fully understood. However, it is unlikely that simple linear models can capture the relation between neural activity and continuous spoken speech. APPROACH: Here we show that deep neural networks can be used to map ECoG from speech production areas onto an intermediate representation of speech (logMel spectrogram). The proposed method uses a densely connected convolutional neural network topology which is well-suited to work with the small amount of data available from each participant. MAIN RESULTS: In a study with six participants, we achieved correlations up to r = 0.69 between the reconstructed and original logMel spectrograms. We transfered our prediction back into an audible waveform by applying a Wavenet vocoder. The vocoder was conditioned on logMel features that harnessed a much larger, pre-existing data corpus to provide the most natural acoustic output. SIGNIFICANCE: To the best of our knowledge, this is the first time that high-quality speech has been reconstructed from neural recordings during speech production using deep neural networks.


Assuntos
Córtex Cerebral/fisiologia , Auxiliares de Comunicação para Pessoas com Deficiência , Eletrocorticografia/métodos , Redes Neurais de Computação , Fala/fisiologia , Humanos , Estimulação Luminosa/métodos
19.
Neuroscientist ; 25(2): 139-154, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-29772957

RESUMO

Brain-machine interfaces (BMIs) have exploded in popularity in the past decade. BMIs, also called brain-computer interfaces, provide a direct link between the brain and a computer, usually to control an external device. BMIs have a wide array of potential clinical applications, ranging from restoring communication to people unable to speak due to amyotrophic lateral sclerosis or a stroke, to restoring movement to people with paralysis from spinal cord injury or motor neuron disease, to restoring memory to people with cognitive impairment. Because BMIs are controlled directly by the activity of prespecified neurons or cortical areas, they also provide a powerful paradigm with which to investigate fundamental questions about brain physiology, including neuronal behavior, learning, and the role of oscillations. This article reviews the clinical and neuroscientific applications of BMIs, with a primary focus on motor BMIs.


Assuntos
Interfaces Cérebro-Computador , Encéfalo/fisiologia , Movimento , Doenças do Sistema Nervoso/reabilitação , Animais , Encéfalo/fisiopatologia , Humanos , Aprendizagem , Potenciais da Membrana
20.
Annu Int Conf IEEE Eng Med Biol Soc ; 2018: 6014-6017, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30441707

RESUMO

In recent years, many studies examined if EEG signals from traumatic brain injury (TBI) patients can be used for new rehabilitation technologies, such as BCI systems. However, extraction of the high-gamma band related to movement remains challenging due to the presence of surface electromyogram (sEMG) caused by unconscious facial and head movement of patients. In this paper, we proposed a modified independent component analysis (ICA) model for EMG artifact removal in the EEG data from TBI patients with a hemicraniectomy. Here, simulated EMG was generated and added to the raw EEG data as the extra channels for independent components calculation. After running ICA, the independent components (ICs) related to artifacts were identified and rejected automatically through several criteria. EEG data underlying hand movement from one healthy subject and one TBI patient with a hemicraniectomy were conducted to verify the efficacy of this algorithm. Results showed that the proposed algorithm removed sEMG artifacts from the EEG data by up to 86.72% while preserving the associated brain features. In particular, the high-gamma band (80 to 160 Hz) was found to arise principally from the hemicraniectomy area after this technique was applied. Meanwhile, we found that the magnitude of gamma power during movement improved after removal of sEMG artifacts.


Assuntos
Algoritmos , Artefatos , Eletroencefalografia , Processamento de Sinais Assistido por Computador , Encéfalo , Lesões Encefálicas Traumáticas , Eletromiografia , Mãos , Humanos , Movimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA