Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
NAR Cancer ; 5(4): zcad057, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38058548

RESUMO

The therapeutic efficacy of cisplatin and oxaliplatin depends on the balance between the DNA damage induction and the DNA damage response of tumor cells. Based on clinical evidence, oxaliplatin is administered to cisplatin-unresponsive cancers, but the underlying molecular causes for this tumor specificity are not clear. Hence, stratification of patients based on DNA repair profiling is not sufficiently utilized for treatment selection. Using a combination of genetic, transcriptomics and imaging approaches, we identified factors that promote global genome nucleotide excision repair (GG-NER) of DNA-platinum adducts induced by oxaliplatin, but not by cisplatin. We show that oxaliplatin-DNA lesions are a poor substrate for GG-NER initiating factor XPC and that DDB2 and HMGA2 are required for efficient binding of XPC to oxaliplatin lesions and subsequent GG-NER initiation. Loss of DDB2 and HMGA2 therefore leads to hypersensitivity to oxaliplatin but not to cisplatin. As a result, low DDB2 levels in different colon cancer cells are associated with GG-NER deficiency and oxaliplatin hypersensitivity. Finally, we show that colon cancer patients with low DDB2 levels have a better prognosis after oxaliplatin treatment than patients with high DDB2 expression. We therefore propose that DDB2 is a promising predictive marker of oxaliplatin treatment efficiency in colon cancer.

2.
Front Oncol ; 12: 874201, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35719993

RESUMO

Cisplatin induces DNA crosslinks that are highly cytotoxic. Hence, platinum complexes are frequently used in the treatment of a broad range of cancers. Efficiency of cisplatin treatment is limited by the tumor-specific DNA damage response to the generated lesions. We reasoned that better tools to investigate the repair of DNA crosslinks induced by cisplatin would therefore be highly useful in addressing drug limitations. Here, we synthesized a series of cisplatin derivatives that are compatible with click chemistry, thus allowing visualization and isolation of DNA-platinum crosslinks from cells to study cellular responses. We prioritized one alkyne and one azide Pt(II) derivative, Pt-alkyne-53 and Pt-azide-64, for further biological characterization. We demonstrate that both compounds bind DNA and generate DNA lesions and that the viability of treated cells depends on the active DNA repair machinery. We also show that the compounds are clickable with both a fluorescent probe as well as biotin, thus they can be visualized in cells, and their ability to induce crosslinks in genomic DNA can be quantified. Finally, we show that Pt-alkyne-53 can be used to identify DNA repair proteins that bind within its proximity to facilitate its removal from DNA. The compounds we report here can be used as valuable experimental tools to investigate the DNA damage response to platinum complexes and hence might shed light on mechanisms of chemoresistance.

3.
Artigo em Inglês | MEDLINE | ID: mdl-35483778

RESUMO

Levels of DNA damage represent the dynamics between damage formation and removal. Therefore, to better interpret human biomonitoring studies with DNA damage endpoints, an individual's ability to recognize and properly remove DNA damage should be characterized. Relatively few studies have included DNA repair as a biomarker and therefore, assembling and analyzing a pooled database of studies with data on base excision repair (BER) was one of the goals of hCOMET (EU-COST CA15132). A group of approximately 1911 individuals, was gathered from 8 laboratories which run population studies with the comet-based in vitro DNA repair assay. BER incision activity data were normalized and subsequently correlated with various host factors. BER was found to be significantly higher in women. Although it is generally accepted that age is inversely related to DNA repair, no overall effect of age was found, but sex differences were most pronounced in the oldest quartile (>61 years). No effect of smoking or occupational exposures was found. A body mass index (BMI) above 25 kg/m2 was related to higher levels of BER. However, when BMI exceeded 35 kg/m2, repair incision activity was significantly lower. Finally, higher BER incision activity was related to lower levels of DNA damage detected by the comet assay in combination with formamidopyrimidine DNA glycosylase (Fpg), which is in line with the fact that oxidatively damaged DNA is repaired by BER. These data indicate that BER plays a role in modulating the steady-state level of DNA damage that is detected in molecular epidemiological studies and should therefore be considered as a parallel endpoint in future studies.


Assuntos
Dano ao DNA , Reparo do DNA , Ensaio Cometa , Reparo do DNA/genética , DNA-Formamidopirimidina Glicosilase , Estudos Epidemiológicos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
4.
Trends Cancer ; 7(2): 98-111, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33109489

RESUMO

Targeted cancer therapies represent a milestone towards personalized treatment as they function via inhibition of cancer-specific alterations. Polymerase θ (POLQ), an error-prone translesion polymerase, also involved in DNA double-strand break (DSB) repair, is often upregulated in cancer. POLQ is synthetic lethal with various DNA repair genes, including known cancer drivers such as BRCA1/2, making it essential in homologous recombination-deficient cancers. Thus, POLQ represents a promising target in cancer therapy and efforts for the development of POLQ inhibitors are actively underway with first clinical trials due to start in 2021. This review summarizes the journey of POLQ from a backup DNA repair enzyme to a promising therapeutic target for cancer treatment.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , DNA Polimerase Dirigida por DNA/metabolismo , Desenvolvimento de Medicamentos/tendências , Neoplasias/tratamento farmacológico , Inibidores da Síntese de Ácido Nucleico/farmacologia , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Linhagem Celular Tumoral , Quebras de DNA de Cadeia Dupla , Reparo do DNA/efeitos dos fármacos , Modelos Animais de Doenças , Recombinação Homóloga/efeitos dos fármacos , Humanos , Camundongos , Terapia de Alvo Molecular/métodos , Neoplasias/genética , Neoplasias/mortalidade , Inibidores da Síntese de Ácido Nucleico/uso terapêutico , Prognóstico , Mutações Sintéticas Letais/efeitos dos fármacos , DNA Polimerase teta
5.
Cell Mol Life Sci ; 77(10): 2005-2016, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31392348

RESUMO

The effectiveness of many DNA-damaging chemotherapeutic drugs depends on their ability to form monoadducts, intrastrand crosslinks and/or interstrand crosslinks (ICLs) that interfere with transcription and replication. The ERCC1-XPF endonuclease plays a critical role in removal of these lesions by incising DNA either as part of nucleotide excision repair (NER) or interstrand crosslink repair (ICLR). Engagement of ERCC1-XPF in NER is well characterized and is facilitated by binding to the XPA protein. However, ERCC1-XPF recruitment to ICLs is less well understood. Moreover, specific mutations in XPF have been found to disrupt its function in ICLR but not in NER, but whether this involves differences in lesion targeting is unknown. Here, we imaged GFP-tagged ERCC1, XPF and ICLR-defective XPF mutants to investigate how in human cells ERCC1-XPF is localized to different types of psoralen-induced DNA lesions, repaired by either NER or ICLR. Our results confirm its dependence on XPA in NER and furthermore show that its engagement in ICLR is dependent on FANCD2. Interestingly, we find that two ICLR-defective XPF mutants (R689S and S786F) are less well recruited to ICLs. These studies highlight the differential mechanisms that regulate ERCC1-XPF activity in DNA repair.


Assuntos
Proteínas de Ligação a DNA/genética , Endonucleases/genética , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/genética , Proteína de Xeroderma Pigmentoso Grupo A/genética , Linhagem Celular , DNA/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Ficusina/farmacologia , Humanos , Mutação/efeitos dos fármacos
6.
Nucleic Acids Res ; 47(12): 6269-6286, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31287140

RESUMO

Protein-protein interactions regulate many essential enzymatic processes in the cell. Somatic mutations outside of an enzyme active site can therefore impact cellular function by disruption of critical protein-protein interactions. In our investigation of the cellular impact of the T304I cancer mutation of DNA Polymerase ß (Polß), we find that mutation of this surface threonine residue impacts critical Polß protein-protein interactions. We show that proteasome-mediated degradation of Polß is regulated by both ubiquitin-dependent and ubiquitin-independent processes via unique protein-protein interactions. The ubiquitin-independent proteasome pathway regulates the stability of Polß in the cytosol via interaction between Polß and NAD(P)H quinone dehydrogenase 1 (NQO1) in an NADH-dependent manner. Conversely, the interaction of Polß with the scaffold protein X-ray repair cross complementing 1 (XRCC1) plays a role in the localization of Polß to the nuclear compartment and regulates the stability of Polß via a ubiquitin-dependent pathway. Further, we find that oxidative stress promotes the dissociation of the Polß/NQO1 complex, enhancing the interaction of Polß with XRCC1. Our results reveal that somatic mutations such as T304I in Polß impact critical protein-protein interactions, altering the stability and sub-cellular localization of Polß and providing mechanistic insight into how key protein-protein interactions regulate cellular responses to stress.


Assuntos
DNA Polimerase beta/metabolismo , NAD(P)H Desidrogenase (Quinona)/metabolismo , Estresse Oxidativo , Proteína 1 Complementadora Cruzada de Reparo de Raio-X/metabolismo , Linhagem Celular Tumoral , Cromatina/enzimologia , Neoplasias do Colo/genética , DNA Polimerase beta/química , DNA Polimerase beta/genética , Estabilidade Enzimática , Humanos , Mutação , NAD/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitinação
7.
DNA Repair (Amst) ; 72: 77-85, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30314738

RESUMO

The DNA-damaging agent 5-fluorouracil represents the most commonly used chemotherapeutic drug for colorectal cancer patients. DNA lesions associated with 5-fluorouracil therapy are primarily repaired by base excision repair (BER) and mismatch repair (MMR) pathways. Published evidence suggests that the individual DNA repair capacity (DRC) may affect a patient's prognosis and response to chemotherapy. With this in mind, we designed a prospective study of which the main aim was to investigate BER-DRC in relation to 5-fluorouracil response as potential predictive and/or prognostic biomarker. BER-DRC was supplemented by a microsatellite instability (MSI) analysis which represents an indirect marker of MMR activity in the tumor. All parameters were measured in paired samples of tumor tissue and non-malignant adjacent mucosa of 123 incident colon cancer patients. Our results indicate that BER-DRC in non-malignant adjacent mucosa was positively associated with overall survival (P = 0.007) and relapse-free survival (P = 0.04). Additionally, in multivariate analysis, good therapy responders in TNM stage II and III with an elevated BER-DRC in mucosa exhibited better overall survival. Moreover, the overall survival of these patients was even better in the presence of a decreased BER-DRC in tumor tissue. The ratio of BER-DRC in tumor tissue over BER-DRC in mucosa positively correlated with advanced tumor stage (P = 0.003). With respect to MSI, we observed that MSI-high tumors were mostly localized in proximal colon; however, in our cohort, the MSI status affected neither patients' prognosis nor survival. In summary, the results of the present study suggest that the level of BER-DRC is associated with patients' survival. BER-DRC represents a potential prognostic biomarker, applicable for prediction of therapy response and useful for individual approach to patients.


Assuntos
Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Reparo do DNA/efeitos dos fármacos , Neoplasias do Colo/diagnóstico , Feminino , Humanos , Masculino , Instabilidade de Microssatélites/efeitos dos fármacos , Pessoa de Meia-Idade , Prognóstico , Análise de Sobrevida , Resultado do Tratamento
8.
Nat Commun ; 9(1): 4067, 2018 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-30287812

RESUMO

Mutations in SWI/SNF genes are amongst the most common across all human cancers, but efficient therapeutic approaches that exploit vulnerabilities caused by SWI/SNF mutations are currently lacking. Here, we show that the SWI/SNF ATPases BRM/SMARCA2 and BRG1/SMARCA4 promote the expression of p62/GTF2H1, a core subunit of the transcription factor IIH (TFIIH) complex. Inactivation of either ATPase subunit downregulates GTF2H1 and therefore compromises TFIIH stability and function in transcription and nucleotide excision repair (NER). We also demonstrate that cells with permanent BRM or BRG1 depletion have the ability to restore GTF2H1 expression. As a consequence, the sensitivity of SWI/SNF-deficient cells to DNA damage induced by UV irradiation and cisplatin treatment depends on GTF2H1 levels. Together, our results expose GTF2H1 as a potential novel predictive marker of platinum drug sensitivity in SWI/SNF-deficient cancer cells.


Assuntos
DNA Helicases/metabolismo , Reparo do DNA , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Fatores de Transcrição TFII/metabolismo , Fatores de Transcrição/metabolismo , Linhagem Celular , Dano ao DNA , Humanos , Fator de Transcrição TFIIH
9.
Carcinogenesis ; 39(11): 1359-1367, 2018 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-30277504

RESUMO

MicroRNA (miRNA) profiling represents a promising source of cancer-related biomarkers. miRNA signatures are specific for each cancer type and subgroups of patients with diverse treatment sensitivity. Yet this miRNA potential has not been satisfactorily explored in rectal cancer (RC). The aim of the study was to identify the specific miRNA signature with clinical and therapeutic relevance for RC. Expressions of 2555 miRNA were examined in 20 pairs of rectal tumors and matched non-malignant tissues by 3D-Gene Toray microarray. Candidate miRNAs were validated in an independent cohort of 100 paired rectal tissues and in whole plasma and exosomes of 100 RC patients. To study the association of miRNA profile with therapeutic outcomes, plasma samples were taken repeatedly over a time period of 1 year reflecting thus patients' treatment responses. Finally, the most prominent miRNAs were investigated in vitro for their involvement in cell growth. We identified RC-specific miRNA signature that distinguishes responders from non-responders to adjuvant chemotherapy. A predominant part of identified miRNAs was represented by the members of miR-17/92 cluster. Upregulation of miRNA-17, -18a, -18b, -19a, -19b, -20a, -20b and -106a in tumor was associated with higher risk of tumor relapse and their overexpression in RC cell lines stimulated cellular proliferation. Examination of these miRNAs in plasma exosomes showed that their levels differed between RC patients and healthy controls and correlated with patient's treatment response. miRNAs from miR-17/92 cluster represent a non-invasive biomarker to predict posttreatment prognosis in RC patients.


Assuntos
Antineoplásicos/uso terapêutico , MicroRNAs/genética , Neoplasias Retais/tratamento farmacológico , Neoplasias Retais/genética , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Neoplasias Retais/mortalidade , Resultado do Tratamento
10.
Nucleic Acids Res ; 46(18): 9563-9577, 2018 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-30165384

RESUMO

The structure-specific ERCC1-XPF endonuclease plays a key role in DNA damage excision by nucleotide excision repair (NER) and interstrand crosslink repair. Mutations in this complex can either cause xeroderma pigmentosum (XP) or XP combined with Cockayne syndrome (XPCS-complex) or Fanconi anemia. However, most patients carry compound heterozygous mutations, which confounds the dissection of the phenotypic consequences for each of the identified XPF alleles. Here, we analyzed the functional impact of individual pathogenic XPF alleles on NER. We show that XP-causing mutations diminish XPF recruitment to DNA damage and only mildly affect global genome NER. In contrast, an XPCS-complex-specific mutation causes persistent recruitment of XPF and the upstream core NER machinery to DNA damage and severely impairs both global genome and transcription-coupled NER. Remarkably, persistence of NER factors at DNA damage appears to be a common feature of XPCS-complex cells, suggesting that this could be a determining factor contributing to the development of additional developmental and/or neurodegenerative features in XP patients.


Assuntos
Síndrome de Cockayne/genética , Proteínas de Ligação a DNA/genética , Endonucleases/genética , Xeroderma Pigmentoso/genética , Alelos , Linhagem Celular , Síndrome de Cockayne/patologia , Dano ao DNA/genética , Reparo do DNA/genética , Proteínas de Ligação a DNA/química , Endonucleases/química , Anemia de Fanconi/genética , Anemia de Fanconi/patologia , Genoma Humano/genética , Humanos , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Mutação/genética , Multimerização Proteica/genética
11.
Nucleic Acids Res ; 46(18): 9537-9549, 2018 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-30137419

RESUMO

Sensitivity and resistance of cells to platinum drug chemotherapy are to a large extent determined by activity of the DNA damage response (DDR). Combining chemotherapy with inhibition of specific DDR pathways could therefore improve treatment efficacy. Multiple DDR pathways have been implicated in removal of platinum-DNA lesions, but it is unclear which exact pathways are most important to cellular platinum drug resistance. Here, we used CRISPR/Cas9 screening to identify DDR proteins that protect colorectal cancer cells against the clinically applied platinum drug oxaliplatin. We find that besides the expected homologous recombination, Fanconi anemia and translesion synthesis pathways, in particular also transcription-coupled nucleotide excision repair (TC-NER) and base excision repair (BER) protect against platinum-induced cytotoxicity. Both repair pathways are required to overcome oxaliplatin- and cisplatin-induced transcription arrest. In addition to the generation of DNA crosslinks, exposure to platinum drugs leads to reactive oxygen species production that induces oxidative DNA lesions, explaining the requirement for BER. Our findings highlight the importance of transcriptional integrity in cells exposed to platinum drugs and suggest that both TC-NER and BER should be considered as targets for novel combinatorial treatment strategies.


Assuntos
Neoplasias Colorretais/tratamento farmacológico , Dano ao DNA/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Sistemas CRISPR-Cas/genética , Linhagem Celular Tumoral , Cisplatino/efeitos adversos , Cisplatino/química , Neoplasias Colorretais/genética , Reparo do DNA/genética , Replicação do DNA/efeitos dos fármacos , Humanos , Oxaliplatina/efeitos adversos , Oxaliplatina/química , Platina/efeitos adversos , Platina/química , Espécies Reativas de Oxigênio/química
12.
Sci Rep ; 7(1): 9239, 2017 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-28835712

RESUMO

Several studies have suggested a possible relationship between polymorphic variants of the taste receptors genes and the acceptance, liking and intake of food and beverages. In the last decade investigators have attempted to link the individual ability to taste 6-n-propylthiouracil (PROP) and the sensations, such as astringency and bitterness, elicited by wine or its components, but with contradictory results. We have used the genotype instead of the phenotype (responsiveness to PROP or other tastants), to test the possible relation between genetic variability and the perception of wine characteristic in 528 subjects from Italy and the Czech Republic. We observed several interesting associations, among which the association between several TAS2R38 gene single nucleotide polymorphisms (P = 0.002) and the TAS2R16-rs6466849 polymorphism with wine sourness P = 0.0003). These associations were consistent in both populations, even though the country of origin was an important factor in the two models, thus indicating therefore that genetics alongside cultural factors also play a significant role in the individual liking of wine.


Assuntos
Estudos de Associação Genética , Papilas Gustativas/metabolismo , Percepção Gustatória/genética , Vinho , Adulto , Alelos , República Tcheca , Feminino , Frequência do Gene , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Polimorfismo de Nucleotídeo Único , Propiltiouracila , Paladar
13.
Sci Rep ; 6: 29023, 2016 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-27383461

RESUMO

Successful molecular analyses of human solid tissues require intact biological material with well-preserved nucleic acids, proteins, and other cell structures. Pre-analytical handling, comprising of the collection of material at the operating theatre, is among the first critical steps that influence sample quality. The aim of this study was to compare the experimental outcomes obtained from samples collected and stored by the conventional means of snap freezing and by PAXgene Tissue System (Qiagen). These approaches were evaluated by measuring rRNA and mRNA integrity of the samples (RNA Quality Indicator and Differential Amplification Method) and by gene expression profiling. The collection procedures of the biological material were implemented in two hospitals during colon cancer surgery in order to identify the impact of the collection method on the experimental outcome. Our study shows that the pre-analytical sample handling has a significant effect on the quality of RNA and on the variability of qPCR data. PAXgene collection mode proved to be more easily implemented in the operating room and moreover the quality of RNA obtained from human colon tissues by this method is superior to the one obtained by snap freezing.


Assuntos
Carcinoma/química , Colo/química , Neoplasias do Colo/química , Criopreservação/métodos , Proteínas de Neoplasias/genética , Preservação Biológica/métodos , RNA Neoplásico/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real/métodos , Manejo de Espécimes/métodos , Carcinoma/cirurgia , Neoplasias do Colo/cirurgia , Criopreservação/instrumentação , DNA Topoisomerases Tipo I/genética , DNA de Neoplasias/genética , DNA Ribossômico/genética , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Ensaios de Triagem em Larga Escala/instrumentação , Ensaios de Triagem em Larga Escala/métodos , Humanos , Proteínas de Neoplasias/biossíntese , Nitrogênio , Soluções para Preservação de Órgãos , Preservação Biológica/instrumentação , Controle de Qualidade , RNA Neoplásico/análise , RNA Neoplásico/genética , RNA Ribossômico 18S/genética , Reação em Cadeia da Polimerase em Tempo Real/instrumentação , Reprodutibilidade dos Testes , Manejo de Espécimes/instrumentação , Fixação de Tecidos/métodos
14.
Oncol Lett ; 9(1): 183-186, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25435955

RESUMO

Mutations in the mutL homolog 1 (MLH1) gene are frequent in patients with hereditary non-polyposis colorectal cancer (CRC). The MLH1 gene was screened for mutations in patients with sporadic CRC. The nucleotide sequences for all 19 exons of MLH1 were analyzed by high resolution melting and sequenced in a group of 104 sporadic CRC patients, and the results were verified in a replication group of 1,095 patients and 1,469 controls. Different melting profiles for exon 2 of the MLH1 gene were observed in the germline DNA of one patient. Sequencing of the patient's DNA resulted in the identification of a heterozygous C>G variant at c.204, which resulted in an Ile68Met change in the amino acid. A detailed search of the National Center for Biotechnology Information and the 1000 Genomes databases indicated that the detected variant was unique. According to the SIFT and PolyPhen-2 algorithms, the substitution of Ile to Met was predicted to decrease the activity of the MLH1 protein. The newly identified, functional germline variant was not present in any other CRC patient or control. Thus, a novel germline variant in the MLH1 gene was identified, representing a rare event in sporadic CRC. The occurrence and relevance of this mutation in other types of cancer requires additional investigation.

15.
Mol Carcinog ; 54(9): 769-78, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24585457

RESUMO

DNA repair in blood cells was observed to be suboptimal in cancer patients at diagnosis, including colorectal cancer (CRC). To explore the causality of this phenomenon, we studied the dynamics of DNA repair from diagnosis to 1 yr follow-up, and with respect to CRC treatment. Systemic CRC therapy is targeted to DNA damage induction and DNA repair is thus of interest. CRC patients were blood-sampled three times in 6-mo intervals, starting at the diagnosis, and compared to healthy controls. DNA repair was characterized by mRNA levels of 40 repair genes, by capacity of nucleotide excision repair (NER), and by levels of DNA strand breaks (SBs). NER and base excision repair genes were significantly under-expressed (P < 0.016) in patients at diagnosis compared to controls, in accordance with reduced NER function (P = 0.008) and increased SBs (P = 0.015). Six months later, there was an increase of NER capacity, but not of gene expression levels, in treated patients only. A year from diagnosis, gene expression profiles and NER capacity were significantly modified in all patients and were no longer different from those measured in controls. All patients were free of relapse at the last sampling, so we were unable to clarify the impact of DNA repair parameters on treatment response. However, we identified a panel of blood DNA repair-related markers discerning acute stage of the disease from the remission period. In conclusion, our results support a model in which DNA repair is altered as a result of cancer.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Reparo do DNA , Idoso , Estudos de Casos e Controles , Colo/efeitos dos fármacos , Colo/metabolismo , Neoplasias Colorretais/sangue , Quebras de DNA/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Feminino , Seguimentos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Pessoa de Meia-Idade , Reto/efeitos dos fármacos , Reto/metabolismo
16.
Front Genet ; 5: 288, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25202323

RESUMO

Cellular repair enzymes remove virtually all DNA damage before it is fixed; repair therefore plays a crucial role in preventing cancer. Repair studied at the level of transcription correlates poorly with enzyme activity, and so assays of phenotype are needed. In a biochemical approach, substrate nucleoids containing specific DNA lesions are incubated with cell extract; repair enzymes in the extract induce breaks at damage sites; and the breaks are measured with the comet assay. The nature of the substrate lesions defines the repair pathway to be studied. This in vitro DNA repair assay has been modified for use in animal tissues, specifically to study the effects of aging and nutritional intervention on repair. Recently, the assay was applied to different strains of Drosophila melanogaster proficient and deficient in DNA repair. Most applications of the repair assay have been in human biomonitoring. Individual DNA repair activity may be a marker of cancer susceptibility; alternatively, high repair activity may result from induction of repair enzymes by exposure to DNA-damaging agents. Studies to date have examined effects of environment, nutrition, lifestyle, and occupation, in addition to clinical investigations.

17.
Pathol Res Pract ; 210(12): 855-62, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25238938

RESUMO

Non-alcoholic-fatty-liver-disease (NAFLD) is a clinicopathologic entity characterized by a variety of hepatic injury patterns without significant alcohol use. It has a close association with obesity, so treatment includes weight loss, control of insulin sensitivity, interventions directed at inflammation and fibrosis. There is a certain relationship between the grade and duration of food restriction and hepatic function. The objective of this work was to describe the relationship between biochemistry, autoantibodies, insulin-like growth factor I (IGF-I), insulin-like growth factor binding protein 3 (IGFBP-3), and liver morphology in experimental rabbit groups with food restriction as compared to controls with ad libitum food (ADL) income. The experiment was performed on a total of 24 rabbits of a weaning age of 25-81 days. The first group (R1) was restricted between 32 and 39 days of age to 50 g of food per rabbit a day. The second group (R2) was also restricted between 32 and 39 days, but the rabbits received 65 g of food per rabbit a day. At the end of the experiment, the blood and liver samples were collected at necropsy. NAFLD has developed in all three groups. There was any autoantibody positivity in all three groups. IGF-I is moderately higher in R1 and R2 group, as compared to the control group (P > 0.05). IGFBP-3 is without statistical significance in all three groups. Alkaline phosphatase (ALP) is the only liver biochemical parameter that has significantly increased following food restriction (P > 0.039). Single one-week restriction has any protective effect on NAFLD development.


Assuntos
Restrição Calórica , Fígado/patologia , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Fatores Etários , Animais , Autoanticorpos/sangue , Biomarcadores/sangue , Citoproteção , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/sangue , Fator de Crescimento Insulin-Like I/metabolismo , Fígado/imunologia , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/imunologia , Hepatopatia Gordurosa não Alcoólica/patologia , Coelhos , Fatores de Tempo , Aumento de Peso
18.
Front Genet ; 5: 116, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24904630

RESUMO

Thousands of DNA lesions are estimated to occur in each cell every day and almost all are recognized and repaired. DNA repair is an essential system that prevents accumulation of mutations which can lead to serious cellular malfunctions. Phenotypic evaluation of DNA repair activity of individuals is a relatively new approach. Methods to assess base and nucleotide excision repair pathways (BER and NER) in peripheral blood cells based on modified comet assay protocols have been widely applied in human epidemiological studies. These provided some interesting observations of individual DNA repair activity being suppressed among cancer patients. However, extension of these results to cancer target tissues requires a different approach. Here we describe the evaluation of BER and NER activities in extracts from deep-frozen colon biopsies using an upgraded version of the in vitro comet-based DNA repair assay in which 12 reactions on one microscope slide can be performed. The aim of this report is to provide a detailed, easy-to-follow protocol together with results of optimization experiments. Additionally, results obtained by functional assays were analyzed in the context of other cellular biomarkers, namely single nucleotide polymorphisms and gene expressions. We have shown that measuring DNA repair activity is not easily replaceable by genomic or transcriptomic approaches, but should be applied with the latter techniques in a complementary manner. The ability to measure DNA repair directly in cancer target tissues might finally answer questions about the tissue-specificity of DNA repair processes and their real involvement in the process of carcinogenesis.

19.
Mutagenesis ; 29(4): 259-65, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24755277

RESUMO

DNA mismatch repair (MMR) deficiency is one of the best understood forms of genetic instability in colorectal cancer (CRC). CRC is routinely cured by 5-fluorouracil (5-FU)-based chemotherapy, with a prognostic effect and resistance to such therapy conferred by MMR status. In this study, we aimed to analyse the effect of genetic variants in classical coding regions or in less-explored predicted microRNA (miRNA)-binding sites in the 3' untranslated region (3'UTR) of MMR genes on the risk of CRC, prognosis and the efficacy of 5-FU therapy. Four single nucleotide polymorphisms (SNPs) in MMR genes were initially tested for susceptibility to CRC in a case-control study (1095 cases and 1469 healthy controls). Subsequently, the same SNPs were analysed for their role in survival on a subset of patients with complete follow-up. Two SNPs in MLH3 and MSH6 were associated with clinical outcome. Among cases with colon and sigmoideum cancer, carriers of the CC genotype of rs108621 in the 3'UTR of MLH3 showed a significantly increased survival compared to those with the CT + TT genotype (log-rank test, P = 0.05). Moreover, this polymorphism was also associated with an increased risk of relapse or metastasis in patients with heterozygous genotype (log-rank test, P = 0.03). Patients carrying the CC genotype for MSH6 rs1800935 (D180D) and not undergoing 5-FU-based chemotherapy showed a decreased number of recurrences (log-rank test, P = 0.03). No association with CRC risk was observed. We provide the first evidence that variations in potential miRNA target-binding sites in the 3'UTR of MMR genes may contribute to modulate CRC prognosis and predictivity of therapy.


Assuntos
Neoplasias Colorretais/genética , Reparo de Erro de Pareamento de DNA/genética , Enzimas Reparadoras do DNA/genética , Predisposição Genética para Doença , Adulto , Idoso , Estudos de Casos e Controles , Feminino , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética , Fatores de Risco , Resultado do Tratamento
20.
DNA Repair (Amst) ; 16: 66-73, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24674629

RESUMO

The interplay between dietary habits and individual genetic make-up is assumed to influence risk of cancer, via modulation of DNA integrity. Our aim was to characterize internal and external factors that underlie inter-individual variability in DNA damage and repair and to identify dietary habits beneficial for maintaining DNA integrity. Habitual diet was estimated in 340 healthy individuals using a food frequency questionnaire and biomarkers of antioxidant status were quantified in fasting blood samples. Markers of DNA integrity were represented by DNA strand breaks, oxidized purines, oxidized pyrimidines and a sum of all three as total DNA damage. DNA repair was characterized by genetic variants and functional activities of base and nucleotide excision repair pathways. Sex, fruit-based food consumption and XPG genotype were factors significantly associated with the level of DNA damage. DNA damage was higher in women (p=0.035). Fruit consumption was negatively associated with the number of all measured DNA lesions, and this effect was mediated mostly by ß-cryptoxanthin and ß-tocopherol (p<0.05). XPG 1104His homozygotes appeared more vulnerable to DNA damage accumulation (p=0.001). Sex and individual antioxidants were also associated with DNA repair capacity; both the base and nucleotide excision repairs were lower in women and the latter increased with higher plasma levels of ascorbic acid and α-carotene (p<0.05). We have determined genetic and dietary factors that modulate DNA integrity. We propose that the positive health effect of fruit intake is partially mediated via DNA damage suppression and a simultaneous increase in DNA repair capacity.


Assuntos
Antioxidantes/metabolismo , Dano ao DNA/genética , Reparo do DNA , Proteínas de Ligação a DNA/genética , Endonucleases/genética , Comportamento Alimentar , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Adulto , Idoso , Proteínas de Ligação a DNA/metabolismo , Endonucleases/metabolismo , Feminino , Interação Gene-Ambiente , Marcadores Genéticos , Variação Genética , Humanos , Masculino , Pessoa de Meia-Idade , Noruega , Proteínas Nucleares/metabolismo , Polimorfismo de Nucleotídeo Único , Fatores Sexuais , Fatores de Transcrição/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA