Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Biochemistry (Mosc) ; 85(8): 869-882, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33045948

RESUMO

Many chemotherapy drugs block tumor cell division by damaging DNA. DNA polymerases eta (Pol η), iota (Pol ι), kappa (Pol κ), REV1 of the Y-family and zeta (Pol ζ) of the B-family efficiently incorporate nucleotides opposite a number of DNA lesions during translesion DNA synthesis. Primase-polymerase PrimPol and the Pol α-primase complex reinitiate DNA synthesis downstream of the damaged sites using their DNA primase activity. These enzymes can decrease the efficacy of chemotherapy drugs, contribute to the survival of tumor cells and to the progression of malignant diseases. DNA polymerases are promising targets for increasing the effectiveness of chemotherapy, and mutations and polymorphisms in some DNA polymerases can serve as additional prognostic markers in a number of oncological disorders.


Assuntos
Antineoplásicos/farmacologia , DNA Polimerase Dirigida por DNA/metabolismo , DNA/metabolismo , Resistencia a Medicamentos Antineoplásicos , Inibidores da Síntese de Ácido Nucleico/farmacologia , Biossíntese de Proteínas/efeitos dos fármacos , Animais , Antineoplásicos/uso terapêutico , Dano ao DNA/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Replicação do DNA/efeitos dos fármacos , DNA Polimerase Dirigida por DNA/genética , Humanos , Neoplasias/tratamento farmacológico , Inibidores da Síntese de Ácido Nucleico/uso terapêutico , Polimorfismo Genético
2.
Biochemistry (Mosc) ; 85(4): 425-435, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32569550

RESUMO

Tens of thousands of DNA lesions are formed in mammalian cells each day. DNA translesion synthesis is the main mechanism of cell defense against unrepaired DNA lesions. DNA polymerases iota (Pol ι), eta (Pol η), kappa (Pol κ), and zeta (Pol ζ) have active sites that are less stringent toward the DNA template structure and efficiently incorporate nucleotides opposite DNA lesions. However, these polymerases display low accuracy of DNA synthesis and can introduce mutations in genomic DNA. Impaired functioning of these enzymes can lead to an increased risk of cancer.


Assuntos
Dano ao DNA , Reparo do DNA , Replicação do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Neoplasias/patologia , Animais , Humanos , Neoplasias/genética , Neoplasias/metabolismo , DNA Polimerase iota
3.
Exp Oncol ; 40(4): 288-298, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30593754

RESUMO

AIM: Base excision repair (BER) gene polymorphisms are known to play an independent role in predisposition to developing different cancers as well as to be associated with clinicopathological traits of the disease modifying its clinical outcomes. One of the underlying mechanisms is presumed to include interplay between BER gene polymorphisms and key mutational, epigenetic and chromosomal events in tumor tissues. The present study was aimed at elucidating potential gene-gene interaction and assessing their mutual effects in bladder cancer (BC). MATERIALS AND METHODS: The earlier obtained data on genotyping patients with verified diagnosis of BC for OGG1 rs1052133 (Ser326Cys) and XRCC1 rs25487 (Arg399Gln) polymorphisms were used for this study. The tumor tissue samples from the same patients were analyzed for mutations, epigenetic variations and losses of heterozygosity in some key genes involved in divergent pathogenic pathways of BC. RESULTS: It was shown that the OGG1 (326 codon) heterozygous genotype as well as the minor 326Cys allele can intensify a mutational response of the RAS locus in urothelial carcinomas in the total cohort of patients simultaneously decreasing the mutation rates in the PIK3CA locus in smokers. The XRCC1 (399 codon) heterozygous genotype as well as the minor 399Gln allele reduced the frequency of LOH in the PTEN and TNKS genes, but did not affect the mutational variability in any locus tested. Both polymorphisms influenced the methylation status, carriers of OGG1 326Ser/Cys or Ser/Cys+Cys/Cys genotypes demonstrating increased frequency of methylated RUNX3 and ISL1 genes whereas the similar effect of XRCC1 polymorphism concerning methylation of p16 and TIMP3 genes. When dividing the total cohort into groups based on the extent of tumor spread, the observed associations were characteristic of non-muscle invasive BC. CONCLUSION: The BER gene polymorphisms contributed to modification of key molecular events in urothelial carcinomas. Their mutual effects mainly manifested in non-muscle invasive BC. The underlying mechanisms as well as possible clinical outcomes need to be further explored to propose novel prognostic biomarkers for BC.


Assuntos
Reparo do DNA/genética , Polimorfismo de Nucleotídeo Único/genética , Neoplasias da Bexiga Urinária/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Feminino , Genótipo , Humanos , Masculino , Metilação , Pessoa de Meia-Idade , Mutação
4.
Exp Oncol ; 36(4): 246-51, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25537218

RESUMO

AIM: The aim of this study was to determine the frequencies of FGFR3 and TP53 mutations in a prospective cohort of 150 bladder cancer patients and to assess the relationship between their mutational status and clinicopathological variables. MATERIALS AND METHODS: The FGFR3 and TP53 mutations were detected by the SNaPshot method and PCR-single-strand conformational polymorphism analysis followed by DNA sequencing. RESULTS: The activating FGFR3 mutations were found in 71 (47.3%) whereas TP53 mutations were observed in 31 (20.7%) urothelial carcinomas. FGFR3-mutant tumors significantly correlated with lower tumor stage and grade, papillary form of bladder cancer and the absence of metastases while TP53-mutant tumors were strongly associated with higher tumor stage and grade as well as the presence of metastasis. We also found significant inverse correlation between FGFR3 mutations and TP53 alterations in urothelial carcinomas (p=0.03). Four possible genotypes were observed in the whole studied cohort, namely FGFR3mut/TP53wt (41.3%), FGFR3wt/TP53wt (38%), FGFR3wt/TP53mut (14.7%), and FGFR3mut/TP53mut (6%). Tumors with FGFR3wt/TP53wt genotype comprised the subgroup, in which all stages and grades were equally distributed. CONCLUSIONS: Our findings confirm the alternative role of FGFR3 and TP53 mutations in the development of bladder cancer. Together these two genetic markers are attributed to 62% of the tumors studied. Tumors with both wild type genes included urothelial carcinomas of all stages and grades and may develop through another genetic pathway. To elucidate complete molecular profile of bladder tumors further additional studies are needed.


Assuntos
Mutação , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Proteína Supressora de Tumor p53/genética , Neoplasias da Bexiga Urinária/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Substituição de Aminoácidos , Análise Mutacional de DNA , Éxons , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Taxa de Mutação , Gradação de Tumores , Estadiamento de Neoplasias , Estudos Prospectivos , Fatores de Risco , Carga Tumoral , Neoplasias da Bexiga Urinária/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA