Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mil Med ; 186(Suppl 1): 295-299, 2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33499459

RESUMO

INTRODUCTION: Scarcity of operating rooms and personal protective equipment in far-forward field settings make surgical infections a potential concern for combat mortality and morbidity. Surgical and transport personnel also face infectious risks from bodily fluid exposures. Our study aimed to describe the serial, proof-of-concept testing of the SurgiBox technology: an inflatable sterile environment that addresses the aforementioned problems, fits on gurneys and backpacks, and drapes over incisions. MATERIALS AND METHODS: The SurgiBox environmental control unit and inflatable enclosure were optimized over five generations based on iterative feedback from stakeholders experienced in surgery in austere settings. The airflow system was developed by analytic modeling, verified through in silico modeling in SOLIDWORKS, and confirmed with prototype smoke-trail checking. Particulate counts evaluated the enclosure's ability to control and mitigate users' exposures to potentially infectious contaminants from the surgical field in various settings. SurgiBox enclosures were setup over a mannequin's torso, in a configuration and position for either thoracic or abdominal surgery. A particle counter was serially positioned in sternotomy and laparotomy positions, as well as bilateral flank positions. This setup was repeated with open ports exposing the enclosure to the external environment. To simulate stress scenarios, sampling was repeated with enclosure measurements during an increase in external particulate concentration. RESULTS: The airflow technology effectively kept contaminants away from the incision and maintained a pressure differential to reduce particle entry. Benchtop testing demonstrated that even when ports were opened or the external environment had high contaminant burden, the enclosed surgical field consistently registered 0 particle count in all positions. Time from kit opening to incision averaged 54.5 seconds, with the rate-limiting step being connecting the environmental control unit to the enclosure. The portable kit weighted 5.9 lbs. CONCLUSIONS: Analytic, in silico, and mechanical airflow modeling and benchtop testing have helped to quantify the SurgiBox system's reliability in creating and maintaining an operating room-quality surgical field within the enclosure as well as protecting the surgical team outside the enclosure. More recent and ongoing work has focused on specifying optimal use settings in the casualty chain of care, expanding support for circumferential procedures, automating airflow control, and accelerating system setup. SurgiBox's ultimate goal is to take timely, safe surgery to patients in even the most austere of settings.


Assuntos
Salas Cirúrgicas , Equipamento de Proteção Individual , Cuidados Críticos , Humanos , Reprodutibilidade dos Testes , Fumaça
2.
World Neurosurg ; 126: 322-330, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30898738

RESUMO

BACKGROUND: Perioperative cerebral infarction is a potential complication of glioma resection, of which insular tumors are at higher risk because of the proximity of middle cerebral artery branches, including the lateral lenticulostriates and long insular arteries. In this study, 3 patients received three-dimensional rotational angiography, which was fused with magnetic resonance imaging (MRI) for frameless stereotactic navigation during dominant-hemisphere insular glioma resection. METHODS: All patients obtained a preoperative catheter angiogram with a three-dimensional rotational acquisition of the ipsilateral internal carotid artery. The pixel-based axial three-dimensional angiography data, thin-cut structural MRI, tractography from diffusion tensor imaging, and expressive language activation from functional MRI were uploaded into the iPlan software (Brainlab, Heimstetten, Germany) and fused. The target tumor, regional blood vessels, adjacent functional areas, and their associated fiber tracts were segmented and overlaid on the appropriate MRI sequence. This image fusion was used preoperatively to visualize the relationship of the mass with the adjacent vasculature and intraoperatively for frameless stereotactic navigation to optimize preservation of arterial structures. RESULTS: Three patients aged 27-60 years with excellent baseline functional status presented with seizures and were found to have a large dominant-hemisphere T2 hyperintense nonenhancing insular mass. Surgical resection was performed using multimodality neuronavigation. None sustained a postoperative arterial infarction or a perioperative neurologic deficit. CONCLUSIONS: Neuronavigation using a fusion of three-dimensional rotational angiography with MRI is a technique that can be used for preoperative planning and during resection of insular gliomas to optimize preservation of adjacent arteries.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/cirurgia , Córtex Cerebral/cirurgia , Glioma/diagnóstico por imagem , Glioma/cirurgia , Neuronavegação/métodos , Adulto , Córtex Cerebral/diagnóstico por imagem , Feminino , Humanos , Imageamento Tridimensional , Angiografia por Ressonância Magnética , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Período Perioperatório , Cuidados Pré-Operatórios , Estudos Retrospectivos
3.
ACS Macro Lett ; 5(4): 523-527, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35607227

RESUMO

Chain behavior has been determined in polymer nanocomposites (PNCs) comprised of well-dispersed 12 nm diameter silica nanoparticles (NPs) in poly(methyl methacrylate) (PMMA) matrices by Small-Angle Neutron Scattering (SANS) measurements under the Zero Average Contrast (ZAC) condition. In particular, we directly characterize the bound polymer layer surrounding the NPs, revealing the bound layer profile. The SANS spectra in the high-q region also show no significant change in the bulk polymer radius of gyration on the addition of the NPs. We thus suggest that the bulk polymer conformation in PNCs should generally be determined using the high q region of SANS data.

4.
Sci Total Environ ; 386(1-3): 65-82, 2007 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-17716708

RESUMO

Measurements of urban particle number concentrations and size distributions in the range 5-1000 nm were taken at elevated (roof-level) and roadside sampling sites on Narborough Road in Leicester, UK, along with simultaneous measurements of traffic, NO(x), CO and 1,3-butadiene concentrations and meteorological parameters. A fitting program was used to determine the characteristics of up to five modal groups present in the particle size distributions. All particle modal concentrations peaked during the morning and evening rush hours. Additional events associated with the smallest mode, that were not observed to be connected to primary emissions, were also present suggesting that this mode consisted of newly formed secondary particles. These events included peaks in concentration which coincided with peaks in solar radiation, and lower concentrations of the larger modes. Investigation into the relationships between traffic flow and occupancy indicated three flow regimes; free-flow, unstable and congested. During free-flow conditions, positive linear relationships existed between traffic flow and particle modal number concentrations. However, during unstable and congested periods, this relationship was shown to break-down. Similar trends were observed for concentrations of the gas phase pollutants NO(x), CO and 1,3-butadiene. Strong linear relationships existed between NO(x), CO, 1,3-butadiene concentrations, nucleation and Aitken mode concentrations at both sampling locations, indicating a local traffic related emission source. At the roadside, both nucleation and Aitken mode are best represented by a decreasing exponential function with wind speed, whereas at the roof-level this relationship only occurred for Aitken mode particles. The differing relationships at the two sampling locations are most likely due to a combination of meteorological factors and distance from the local emission source.


Assuntos
Monitoramento Ambiental/métodos , Veículos Automotores , Material Particulado/análise , Emissões de Veículos/análise , Cidades , Gases , Tamanho da Partícula , Fatores de Tempo , Reino Unido , Vento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA