Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 422: 126924, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34523468

RESUMO

Selenium (Se) has been mobilised by leaching from coal and associated waste rock exposed by mining activities in Western Canada, with deleterious impact on aquatic wildlife. Waste rock characterisation indicates that up to 7% of the Se, as Se(IV), may be associated with organic matter, with ≈9%, as Se(0), associated with euhedral pyrite. Small 1-2 µm mineral particles with average Se concentration of 1.0 ± 0.4 wt% account for the remaining Se with the largest components likely to be associated with Fe oxide/hydroxide/carbonate as Se(0) and framboidal pyrite as Se(IV) and Se(0). No evidence was found for the presence of Se(-I), Se(-II) or Se(VI). In the first 8 weeks of leaching Se release was not correlated to the addition of aqueous silicate, added to aid pyrite passivation, but was reduced by approximately one third when the waste was treated with manure. This suggests the primary initial source of leached Se was not pyrite. Added organic C results in increased microbial numbers, particularly aerobic microbes, and promotes the formation of extensive coating of extracellular polymeric substances resulting in depletion of O2 at particle surfaces, reducing oxidation of Se(IV) and therefore reducing the leach rate of Se. Subsequent to 8 weeks of leaching the rates of release of Se from the treated wastes were similar regardless of treatment strategy but were reduced as compared to the untreated waste rock, suggestive of partial framboidal pyrite geochemical and microbial passivation. Se leaching was not correlated to S leaching, but the source(s) of the leached S was not known as approximately half of the S within the waste rock was non-sulfidic. These results indicate that utilisation of local organic carbon-containing wastes for coverage of coal waste rock may be a cost-effective strategy to reduce Se leaching to acceptable rates of release regardless of whether the Se is associated with framboidal pyrite or organics.


Assuntos
Selênio , Carbonatos , Carvão Mineral , Mineração , Oxirredução , Selênio/análise
2.
Chemosphere ; 285: 131330, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34246934

RESUMO

Acid and metalliferous drainage (AMD) is a major environmental issue resulting largely from exposure to weathering of mine wastes containing pyrite (FeS2). At-source strategies to reduce the rate of formation of AMD have potential to be more cost-effective and sustainable than post-generation downstream treatments. The objective of this study was to examine the efficacy of geochemical and microbial treatments for at-source control through pyrite surface passivation. Six kinetic leach columns (KLCs), using a mine waste containing 3.8 wt% pyrite, were subjected to various treatments: 1) untreated, 2) blended calcite, and applications of 3) calcite-saturated water, 4) lime-saturated water followed by calcite-saturated water, 5) biosolids extract water (providing a source of organic carbon to promote microbial growth) and 6) biosolids extract in calcite-saturated water. The untreated KLC leachate pH was on average 5.7 for the first 12 weeks, followed by a gradual decrease to pH 4.5 at week 52. This slow pH decrease is attributed to neutralisation released upon Mg-siderite dissolution. The leachate pH from all treated KLCs was near-neutral at the end of the tests. Pyrite was surface-passivated and leaching supressed by all treatments except for calcite-saturated water. Leaching of Mn and Zn from the untreated waste identified the potential for adverse environmental impact. No evidence was found for surface passivation of Zn- or Mn-containing minerals in the treated KLCs. Blended calcite addition and lime-saturated water followed by calcite-saturated water were most effective at reducing release of Zn and Mn, likely due to precipitation as hydroxides/carbonates.


Assuntos
Carbono , Laboratórios , Ferro , Sulfetos
3.
Environ Sci Technol ; 55(4): 2369-2380, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33507750

RESUMO

Chalcopyrite, galena, and sphalerite commonly coexist with pyrite in sulfidic waste rocks. The aim of this work was to investigate their impact, potentially by galvanic interaction, on pyrite oxidation and acid generation rates under simulated acid and metalliferous drainage conditions. Kinetic leach column experiments using single-minerals and pyrite with one or two of the other sulfide minerals were carried out at realistic sulfide contents (total sulfide <5.2 wt % for mixed sulfide experiments), mimicking sulfidic waste rock conditions. Chalcopyrite was found to be most effective in limiting pyrite oxidation and acid generation with 77-95% reduction in pyrite oxidation over 72 weeks, delaying decrease in leachate pH. Sphalerite had the least impact with reduction of pyrite dissolution by 26% over 72 weeks, likely because of the large band gap and poor conductivity of sphalerite. Galena had a smaller impact than chalcopyrite on pyrite oxidation, despite their similar band gaps, possibly because of the greater extent of oxidation and the significantly reduced surface areas of galena (area reductions of >47% for galena vs <1.5% for chalcopyrite) over 72 weeks. The results are directly relevant to mine waste storage and confirm that the galvanic interaction plays a role in controlling acid generation in multisulfide waste even at low sulfide contents (several wt %) with small probabilities (≤0.23%) of direct contact between sulfide minerals in mixed sulfide experiments.


Assuntos
Minerais , Sulfetos , Ácidos , Estresse Oxidativo , Solubilidade
4.
J Hazard Mater ; 393: 122338, 2020 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-32120208

RESUMO

Acid and metalliferous drainage (AMD) remains a challenging issue for the mining sector. AMD management strategies have attempted to shift from treatment of acid leachates post-generation to more sustainable at-source prevention. Here, the efficacy of microbial-geochemical at-source control approach was investigated over a period of 84 weeks. Diverse microbial communities were stimulated using organic carbon amendment in a simulated silicate-containing sulfidic mine waste rock environment. Mineral waste in the unamended leach system generated AMD quickly and throughout the study, with known lithotrophic iron- and sulfur-oxidising microbes dominating column communities. The organic-amended mineral waste column showed suppressed metal dissolution and AMD generation. Molecular DNA-based next generation sequencing confirmed a less diverse lithotrophic community in the acid-producing control, with a more diverse microbial community under organic amendment comprising organotrophic iron/sulfur-reducers, autotrophs, hydrogenotrophs and heterotrophs. Time-series multivariate statistical analyses displayed distinct ecological patterns in microbial diversity between AMD- and non-AMD-environments. Focused ion beam-TEM micrographs and elemental mapping showed that silicate-stabilised passivation layers were successfully established across pyrite surfaces in organic-amended treatments, with these layers absent in unamended controls. Organic amendment and resulting increases in microbial abundance and diversity played an important role in sustaining these passivating layers in the long-term.


Assuntos
Bactérias/metabolismo , Resíduos Industriais/prevenção & controle , Ferro/química , Mineração/métodos , Sulfetos/química , Bactérias/classificação , Bactérias/genética , Técnicas de Tipagem Bacteriana , Compostos Férricos/química , Sequenciamento de Nucleotídeos em Larga Escala , Concentração de Íons de Hidrogênio , Oxirredução , Silicatos/química , Microbiologia do Solo
5.
Sci Rep ; 9(1): 4357, 2019 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-30867478

RESUMO

Most rock extraction sites, including mine sites and building construction sites, require a plan to assess, and mitigate if present, the risk of acid mine drainage (AMD). AMD is typically the major environmental concern where sulfide minerals are present in the excavated material and AMD prediction and remediation is based on internationally-accepted acid-base accounting (ABA) tests of representative field samples. This paper demonstrates that standardized ABA tests may not always be provide the correct AMD classification for commonly occurring waste rocks containing low-pyrite and -carbonate due to mineralogic assumptions inherent in their design. The application of these standard ABA tests at a copper mine site in South Australia resulted in the classification of a portion of its waste material as potentially acid forming in apparent contradiction to long term field measurements. Full definition of the sulfide and silicate minerals enabled re-evaluation of the weathering reactions occurring. The overall rate of neutralisation due to silicate dissolution was found to always exceed the rate of acid generation, in agreement with field observations. Consequently, the waste rock was redefined as non-acid forming. The methods developed represent a significant advance in AMD prediction and more strategic, cost-effective environmental planning, with potential for reclassification of wastes with similar characteristics.

6.
Environ Sci Technol ; 52(20): 11786-11795, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30230322

RESUMO

The aim of this study was to test the performance of a novel method for acid rock drainage (ARD) control through the formation of Al(OH)3-doped passivating surface layers on pyrite. At pH 2.0 and 4.0, there was no obvious inhibition of the pyrite oxidation rate on addition of 20 mg L-1 Al3+ (added as AlCl3·6H2O). In comparison, the pyrite oxidation rate at circumneutral pH (7.4 ± 0.4) decreased with increasing added Al3+ with ≈98% reduction in long-term (282 days) dissolution rates in the presence of 20 mg L-1 Al3+. Al3+ was added to the solution and allowed to equilibrate prior to pyrite addition (2 g L-1). Consequently almost all Al3+ (>99.9%) was initially present as aluminum hydroxide precipitates at pH 7.4. X-ray photoelectron spectroscopy analysis showed a significant concentration of Al3+ (20.3 at. %) on the pyrite surface reacted at pH 7.4 with 20 mg L-1 added Al3+, but no Al3+ on pyrite surfaces reacted at pH 2.0 and 4.0 with added Al3+. Transmission electron microscopy and synchrotron X-ray absorption near edge spectroscopy analyses indicated that compact surface layers containing both goethite and amorphous or nanocrystalline Al(OH)3 formed in the presence of 20 mg L-1 Al3+ at circumneutral pH, in contrast to the porous goethite surface layers formed on pyrite dissolved in the absence of Al3+ under otherwise identical conditions. This work demonstrates the potential for novel Al-based pyrite passivation of relevance to the mining industry where suitable Al-rich waste materials are available for ARD control interventions.


Assuntos
Hidróxido de Alumínio , Ferro , Ácidos , Alumínio , Sulfetos
7.
Environ Sci Technol ; 51(19): 11317-11325, 2017 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-28834427

RESUMO

Acid and metalliferous release occurring when sulfide (principally pyrite)-containing rock from mining activities and from natural environments is exposed to the elements is acknowledged as a major environmental problem. Acid rock drainage (ARD) management is both challenging and costly for operating and legacy mine sites. Current technological solutions are expensive and focused on treating ARD on release rather than preventing it at source. We describe here a viable, practical mechanism for reduced ARD through the formation of silicate-stabilized iron oxyhydroxide surface layers. Without silicate, oxidized pyrite particles form an overlayer of crystalline goethite or lepidocrocite with porous structure. With silicate addition, a smooth, continuous, coherent and apparently amorphous iron oxyhydroxide surface layer is observed, with consequent pyrite dissolution rates reduced by more than 90% at neutral pH. Silicate is structurally incorporated within this layer and inhibits the phase transformation from amorphous iron (oxy)hydroxide to goethite, resulting in pyrite surface passivation. This is confirmed by computational simulation, suggesting that silicate-doping of a pseudoamorphous iron oxyhydroxide (ferrihydrite structure) is thermodynamically more stable than the equivalent undoped structure. This mechanism and its controlling factors are described. As a consequence of the greatly reduced acid generation rate, neutralization from on-site available reactive silicate minerals may be used to maintain neutral pH, after initial limestone addition to achieve neutral pH, thus maintaining the integrity of these layers for effective ARD management.


Assuntos
Ferro , Silicatos , Sulfetos , Mineração
8.
Environ Sci Technol ; 48(19): 11445-52, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25178979

RESUMO

Jarosites and schwertmannite can be formed in the unsaturated oxidation zone of sulfide-containing mine waste rock and tailings together with ferrihydrite and goethite. They are also widely found in process wastes from electrometallurgical smelting and metal bioleaching and within drained coastal lowland soils (acid-sulfate soils). These secondary minerals can temporarily store acidity and metals or remove and immobilize contaminants through adsorption, coprecipitation, or structural incorporation, but release both acidity and toxic metals at pH above about 4. Therefore, they have significant relevance to environmental mineralogy through their role in controlling pollutant concentrations and dynamics in contaminated aqueous environments. Most importantly, they have widely different acid release rates at different pHs and strongly affect drainage water acidity dynamics. A procedure for estimation of the amounts of these different forms of nonsulfide stored acidity in mining wastes is required in order to predict acid release rates at any pH. A four-step extraction procedure to quantify jarosite and schwertmannite separately with various soluble sulfate salts has been developed and validated. Corrections to acid potentials and estimation of acid release rates can be reliably based on this method.


Assuntos
Ácidos/análise , Monitoramento Ambiental/métodos , Mineração , Resíduos/análise , Compostos Férricos/química , Hidrólise , Ferro/química , Compostos de Ferro/isolamento & purificação , Minerais/análise , Oxalatos/química , Prótons , Sulfatos/análise , Sulfatos/química , Sulfetos/análise , Sulfetos/química , Água
9.
Phys Chem Chem Phys ; 14(7): 2434-42, 2012 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-22249653

RESUMO

The critical role of the Auger parameter in providing insight into both initial state and final state factors affecting measured XPS binding energies is illustrated by analysis of Ni 2p(3/2) and L(3)M(45)M(45) peaks as well as the Auger parameters of nickel alloys, halides, oxide, hydroxide and oxy-hydroxide. Analyses of the metal and alloys are consistent with other works, showing that final state relaxation shifts, ΔR, are determined predominantly by changes in the d electron population and are insensitive to inter-atomic charge transfer. The nickel halide Auger parameters are dominated by initial state effects, Δε, with increasing positive charge on the core nickel ion induced by increasing electronegativity of the ligands. This effect is much greater than the final state shifts; however, the degree of covalency is reflected in the Wagner plot where the more polarizable iodide and bromide have greater ΔR. The initial state shift for NiO is much smaller than those of Ni(OH)(2) or NiOOH and the effective oxidation state is much less than that inferred from the average electronegativity of the ligand(s). Auger parameter analysis indicates that the bonding in NiO appears to have stronger contributions from initial state charge transfer from the oxygen ligands than that in the hydroxide and oxyhydroxide consistent with the considerable differences in the Ni-O bond lengths in these compounds with some relaxation of this state occurring during final state phenomena. The Auger parameter of NiOOH is, however, shifted positively, like the iodide, indicating greater polarizability of the ligands and covalency in this bonding. There is support for more direct use of relative bond lengths in interpreting differences between related compounds rather than more general electronegativity or similar parameters.

10.
Langmuir ; 26(16): 13227-35, 2010 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-20695563

RESUMO

The flocculation and solid/liquid separation of four well-characterized kaolinites (2 well, 2 poorly crystallized) have been studied for comparison of surface structure (SEM), aggregate structure during flocculation (cryo-SEM), settling rate, and bed density (with raking). It is shown that major differences in these properties are largely due to crystallinity and consequent surface structure of the extensive (larger dimension "basal") face. Well-crystallized kaolinites, with higher Hinckley indices and lower aspect ratios, have relatively smooth, flat basal surfaces and thicker edge planes promoting both effective initial bridging flocculation (largely edge-edge) and structural rearrangement to face-face during the raking process. This results in faster settling rates and more compact bed structures. Poorly crystallized kaolinites, with low Hinckley indices and high aspect ratios, exhibit ragged, stepped structures of the extensive face with a high proportion of nanosized islands forming cascade-like steps (i.e., multiple edges) contributing up to 30% of the specific surface area and providing flocculant adsorption sites (hydroxyl groups) across this extensive face. This leads to bridging flocculation taking place on both edge and extensive ("basal") planes, producing low-density edge-face structures during flocculation which leads to slow settling rates and poor bed densities. In particular, the complex surface morphology of the poorly crystallized kaolinites resists the transformation of edge-face structures to dense face-face structures under shear force introduced by raking. This results in low sediment density for poorly crystallized kaolinites. The studies suggest that the main influence on settling rates and bed densities of kaolinites in mineral tailings is likely to be related to the crystallinity and surface morphology of the kaolinite. They also suggest that interpretation of kaolinite behavior based on models of a flat (001) basal plane and edge sites only at the particle boundaries is not likely to be adequate for many real, less-crystallized kaolinites.

11.
Sci Total Environ ; 408(16): 3392-402, 2010 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-20452647

RESUMO

The result of leaching of a 75% acid rock/25% limestone column with limestone-saturated solution has shown that the pH of the effluent recovered from 2.5, after apparent loss of acid neutralizing capacity after 4 years with water leaching, to pH 7 in less than 3 years. Bulk assay results, XRD and SEM/EDS analyses of samples from the column at 384 weeks (pH 3.6) and 522 weeks (pH 6.9) during this recovery have suggested that this is due to formation in situ of fine calcite. Calcite, initially blended to the column material at 25 wt.% was not found in the XRD of the 384 week sample but is clearly found in the 522 week XRD. This increased calcite content appears to be derived from the limestone-saturated water as finely divided solid precipitated in the drying cycles in the column. This result is confirmed by assessment of the 522 week sample as non-acid forming. Loss of some reactive aluminosilicate minerals, formation of secondary, precipitated, surface-attached gypsum and loss of fine secondary jarosite occurs across this pH range but fine, surface-attached jarosite is still found in the 522 week sample implying relatively slow dissolution kinetics. In comparison with the 384 week sample, armouring of highly reacted pyrite particles by surface layers of iron oxyhydroxides and aluminosilicates has become more extensive at 522 weeks after return of the pH to neutral values. This is consistent with results from Freeport field samples from limestone blended test pads where pyrite armouring was also substantially increased at higher pH. The results suggest that it may be possible to effectively maintain neutral pH and passivate pyrite, reducing oxidation rates by more than an order of magnitude, using limestone-saturated solution dump feed rather than bulk limestone blending or covers.


Assuntos
Ácidos , Carbonato de Cálcio/síntese química , Água , Difração de Raios X
12.
Artigo em Inglês | MEDLINE | ID: mdl-20390894

RESUMO

Ultrasound assisted environmental remediation is emerging as a viable technology to remove organic pollutants. In this study, the potential of low frequency ultrasound (20 kHz) to remediate chloroform contaminated waters (demineralised water and groundwater) in batch and flow cell treatment was evaluated. The results show that approx. 8 mg/L of chloroform was completely mineralized within 60 min in batch as well as flow cell treatments in both waters. However, flow cell treatment was superior to the batch mode for demineralised water in contrast to the groundwater for which there was no appreciable difference between batch and flow cell modes during initial 30 min. The presence of dissolved organic carbon, higher total dissolved solid content and any other co-contaminants might have contributed to the slower rate of chloroform destruction in the groundwater compared to the demineralised water. This study demonstrates the potential of low frequency ultrasound for remediation of chloroform contaminated waters.


Assuntos
Clorofórmio/química , Ultrassom , Cromatografia Gasosa-Espectrometria de Massas
13.
Sci Total Environ ; 408(9): 2129-35, 2010 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-20097405

RESUMO

In the long-term phase of an acid rock drainage (ARD) evolution profile, after any short-term neutralisation capacity provided by carbonate minerals is exhausted, the net acid release is a product of a declining acid generation rate (AGR) and a slower, long-term acid neutralisation rate mainly provided by gangue silicate minerals. At some point, the AGR and the non-carbonate acid neutralisation rate (ANRnc) will be similar. Matching of the AGR and ANRnc near 10mg H(2)SO(4)/kg/week is demonstrated in data from 10-year columns. This long-term neutralisation is not measured at present in any accepted assessment tests. Methods to estimate ANRnc, based on silicate mineralogy and solution assays from long-term column leach tests, are compared. Good agreement is demonstrated between rates measured from the solution assay data and those calculated from mineralogy using kinetic databases. More rigorous analysis of the leachate chemistry of selected long-term leach tests also suggests possible cover design criteria based on the maximum AGR that will maintain a pH>4 in leachate from ARD materials. The data show a distinct break at an AGR of 3mg H(2)SO(4)/kg/week, below which no leachate pH is less than 4. The results indicate that an AGR of 10t H(2)SO(4)/ha/year is conservative and a suitable cover design target for ARD control that would be matched by ANRnc.


Assuntos
Carbonatos/química , Monitoramento Ambiental/métodos , Poluentes do Solo/química , Ácidos Sulfúricos/química , Carbonatos/análise , Fenômenos Geológicos , Concentração de Íons de Hidrogênio , Resíduos Industriais/análise , Silicatos/análise , Silicatos/química , Poluentes do Solo/análise , Solubilidade , Ácidos Sulfúricos/análise , Movimentos da Água
14.
J Colloid Interface Sci ; 336(2): 616-23, 2009 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-19439314

RESUMO

The critical role of dissolved gas nano-bubbles at solid surfaces in particle association, aggregation, adsorption and flotation has been recognised in the recent literature. The principles of mineral processing, fine particle separation, and water recovery depend upon changing the surface properties at the solid-liquid interface. It has been assumed that the solid surfaces are either in direct contact with the liquid or may have nano-bubbles attached only at hydrophobic surfaces. This paper shows that gaseous layers 50-100 nm thick can be attached surrounding high proportions of solid clay mineral surfaces restricting reagent access, producing buoyancy and aggregation. Ultrasonic treatment before flocculant addition effectively removes these gaseous layers as well as dispersed micro-bubbles. Re-aggregation after brief ultrasonication produces denser (less buoyant) flocs, demonstrated with cryo-SEM statistical analysis, giving more complete access of the flocculant to the aggregate surfaces. In the subsequent flocculant addition, the settling rates of the denser flocs can be increased up to 40%. If ultrasonic action is continued, the bridged flocs are disturbed with some redispersion of smaller flocs and individual platelets and consequent slower settling rates.

15.
J Hazard Mater ; 168(2-3): 1380-6, 2009 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-19346068

RESUMO

High frequency ultrasound, as an alternative to high cost incineration, has been investigated to remediate DDT from sand and soil slurries. In this study, low power high frequency ultrasound (1.6 MHz; 150 W/L), with operating costs much lower than low frequency ultrasound, has been used to remediate DDT in liquid solution and in sand slurries. At 1.6 MHz, the wavelength, cycle time, bubble size and bubble life time are much smaller and the number of bubbles per litre is much larger than at frequencies below 50 kHz. These large differences affect the effective mass transfer to the bubbles and subsequent energy release, hydrolysis of water and degradation mechanism. Based on DDT measurement, using high frequency ultrasound, 90% of 8 mg/L of DDT from liquid solution was destroyed in 90 min. Removal efficiency from 32.6 mg/L of DDT in a 40 wt.% sand slurry was 22% in 90 min. Other slurry and DDT combinations are reported. Incremental chloride measurements indicated that combination of ultrasound and iron powder helps to increase the remediation rate of DDT from sand slurry, e.g. 46% cf. 32% for a 20 wt.% slurry. The results show that high frequency ultrasound is effective in degrading the non-polar pollutant DDT dispersed in water and in sand slurry. In practice, due to intensity limitations in currently available equipment and higher attenuation of energy, high frequency ultrasound has a low volume coverage and would require circulation of the slurry past the sonotrode, multiple sonotrodes, larger sonotrode area and lower slurry densities may still be required.


Assuntos
DDT/química , Praguicidas/química , Dióxido de Silício , Ultrassom , Poluentes Químicos da Água/química
16.
J Colloid Interface Sci ; 328(1): 73-80, 2008 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-18834991

RESUMO

Effective flocculation and dewatering of mineral processing streams containing colloidal clays has become increasingly urgent. Release of water from slurries in tailings streams and dam beds for recycle water consumption, is usually slow and incomplete. To achieve fast settling and minimization of retained water, individual particles need to be bound, in the initial stages of thickening, into large, high-density aggregates, which may sediment more rapidly with lower intra-aggregate water content. Quantitative cryo-SEM image analysis shows that the structure of aggregates formed before flocculant addition has a determinative effect on these outcomes. Without flocculant addition, 3 stages occur in the mechanism of primary dewatering of kaolinite at pH 8: initially, the dispersed structures already show edge-edge (EE) and edge-face (EF) inter-particle associations but these are open, loose and easily disrupted; in the hindered settling region, aggregates are in adherent, chain-like structures of EE and stairstep face-face (FF) associations; this network structure slowly partially rearranges from EE chains to more compact face-face (FF) contacts densifying the aggregates with increased settling rates. During settling, the sponge-like network structure with EE and FF string-like aggregates, limits dewatering because the steric effects in the resulting partially-gelled aggregate structures are dominant. With flocculant addition, the internal structure and networking of the pre-aggregates is largely preserved but they are rapidly and effectively bound together by the aggregate-bridging action of the flocculant. The effects of initial pH and Ca ion addition on these structures are also analyzed. Statistical analysis from cryo-SEM imaging shows that there is an inverse correlation of intra-aggregate porosity with Darcian inter-aggregate permeability whereas there is a strong positive correlation of Darcian permeability with settling and primary dewatering rate as a function of pH in suspension. Graphs of partial void contributions also suggest that it is not total porosity that dominates permeability in these systems but the abundance of larger intra-aggregate voids.

17.
Surf Sci ; 602(14): 2402-2411, 2008 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-19809536

RESUMO

Previously, we have developed and characterised a procedure for the deposition of thin silica films by a plasma enhanced chemical vapour deposition (PECVD) procedure using tetraethoxysilane (TEOS) as the main precursor. We have used the silica coatings for improving the corrosion resistance of metals and for enhancing the bioactivity of biomedical metallic implants. Recently, we have been fine-tuning the PECVD method for producing high quality and reproducible PECVD-silica (PECVD-Si) coatings on metals, primarily for biomaterial applications. In order to understand the interaction of the PECVD-Si coatings with biological species (such as proteins and cells), it is important to first analyse the properties of the silica films deposited using the optimised parameters. Therefore, this current investigation was carried out to analyse the characteristic features of PECVD-Si deposited on Ti substrates (PECVD-Si-Ti). We determined that the PECVD-Si coatings on Ti were conformal to the substrate surface, strongly adhered to the underlying substrate and were resistant to delamination. The PECVD-Si surface was composed of stoichiometric SiO(2), showed a low carbon content (below 10 at.%) and was very hydrophilic (contact angle <10°). Finally, we also showed that the PECVD-Si coatings contain functional hydroxyl groups.

18.
Sci Total Environ ; 373(1): 391-403, 2007 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-17196241

RESUMO

In acid base accounting (ABA) estimates of acid mine wastes, the acid potential (AP) estimate can be improved by using the net carbonate value (NCV) reactive sulfide S method rather than total S assay methods but this does not give recovery of potentially acid producing ferrous and ferric sulfates present in many wastes. For more accurate estimation of AP, an effective, site-specific method to quantify acid sulfate salts, such as jarosite and melanterite, in waste rocks has been developed and tested on synthetic and real wastes. The SPOCAS (acid sulfate soils) methods have been modified to an effective, rapid method to speciate sulfate forms in different synthetic waste samples. A three-step sequential extraction procedure has been established. These steps are: (1) argon-purged water extraction (3 min) to extract soluble Fe(II) salts (particularly melanterite), epsomite and gypsum (<10 wt.%), (2) roasting at 550 degrees C (1 h) to remove sulfur from pyrite and other reactive sulfides, (3) HCl extraction (4 M, 30 min) for determination of jarosites. Products (solid and aqueous) have been characterized at each step including the jarosite decomposition process in Step 2 where temperature control is critical to avoid S loss. The sequential extraction procedure was used to quantitatively determine melanterite, epsomite, gypsum, pyrite and jarosite concentrations in a synthetic waste sample containing these mineral phases at 5 wt.% in quartz, and also tested using a tailings waste sample to quantitatively determine epsomite, gypsum and jarosite contents. The method is applicable to most waste samples including those with non-pyrite sulfides but for samples containing significant amounts of sulfur (>1 wt.% S) as copper sulfides, the second step of roasting needs to be excluded from the procedure with an increased time of 4 M HCl extraction to 16 h for jarosite determination.

19.
J Biomed Mater Res A ; 79(2): 271-81, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16817191

RESUMO

Premature bone resorption and remodeling by osteoclasts can limit the longevity of implant fixation and recovery time. Orally administered bisphosphonates (BPs) have been used to inhibit osteoclast action at the implant/bone interface. Ideally, these should be delivered at the interface with the osteoblast-active hydroxyapatite (HA) for maximum effect. This investigation introduces a novel BP loading technique to achieve improved BP release from a simulated body fluid-grown HA (SBF-HA) with the aim of improving implant fixation. A solution co-precipitation technique incorporates the BP (pamidronate) into a thin SBF-HA coating. Surface analysis, using X-ray photoelectron spectroscopy (XPS), of the resultant coating was employed to confirm the presence of the adsorbed BP on the surface of SBF-HA. XPS analysis was also used to determine the optimal adsorption process. Osteoclast cell culture experiments confirmed the biological effectiveness of BP adsorption and proved that the pamidronate was biologically active, causing both decreased osteoclast numbers and decreased resorption.


Assuntos
Materiais Biocompatíveis/química , Osso e Ossos/metabolismo , Difosfonatos/química , Durapatita/química , Adsorção , Animais , Técnicas de Cultura de Células/métodos , Proliferação de Células , Humanos , Osteoclastos/metabolismo , Pamidronato , Coelhos , Espectrometria por Raios X , Propriedades de Superfície , Titânio/química
20.
J Biomed Mater Res A ; 76(2): 347-55, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16270340

RESUMO

Adherent and optically semitransparent thin calcium phosphate (CaP) films were electrochemically deposited on titanium substrates in a modified simulated body fluid at 37 degrees C. Coatings deposited by using periodic pulsed potentials showed better adhesion and better mechanical properties than coatings deposited with use of a constant potential. Scanning electron microscopy was used to study the morphology of the coatings. The coatings displayed a polydispersed porous structure with pores in the range of a few nanometers to 1 mum. Furthermore, X-ray diffractometry and the O(1s) satellite peaks in X-ray photoelectron spectroscopy indicated that the coatings possessed a similar surface chemistry to that of natural bone minerals. These results were confirmed by inductively coupled plasma optical emission spectrometry, which yielded a Ca:P ratio of 1.65, close to that of hydroxyapatite. Contact mode atomic force microscopy (AFM) showed the average thickness of the coatings was in the order of 200 nm. Root-mean-square (RMS) roughness values, also derived by AFM, were shown to be much higher on the titanium-CaP surfaces in comparison with untreated titanium substrates, with RMS values of about 300 and 110 nm, respectively. Cell culture experiments showed that the CaP surfaces are nontoxic to MG63 osteoblastic cells in vitro and were able to support cell growth for up to 4 days, outperforming the untreated titanium surface in a direct comparison. These easily prepared coatings show promise for hard-tissue biomaterials.


Assuntos
Fosfatos de Cálcio , Materiais Revestidos Biocompatíveis/química , Osteoblastos/citologia , Titânio , Adesividade , Líquidos Corporais , Proliferação de Células , Eletroquímica , Teste de Materiais , Mecânica , Porosidade , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA