Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
EBioMedicine ; 94: 104729, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37506544

RESUMO

BACKGROUND: Post-acute sequela of SARS-CoV-2 infection (PASC) encompass fatigue, post-exertional malaise and cognitive problems. The abundant expression of the tryptophan-catabolizing enzyme indoleamine 2,3-dioxygenase-2 (IDO2) in fatal/severe COVID-19, led us to determine, in an exploratory observational study, whether IDO2 is expressed and active in PASC, and may correlate with pathophysiology. METHODS: Plasma or serum, and peripheral blood mononuclear cells (PBMC) were obtained from well-characterized PASC patients and SARS-CoV-2-infected individuals without PASC. We assessed tryptophan and its degradation products by UPLC-MS/MS. IDO2 activity, its potential consequences, and the involvement of the aryl hydrocarbon receptor (AHR) in IDO2 expression were determined in PBMC from another PASC cohort by immunohistochemistry (IHC) for IDO2, IDO1, AHR, kynurenine metabolites, autophagy, and apoptosis. These PBMC were also analyzed by metabolomics and for mitochondrial functioning by respirometry. IHC was also performed on autopsy brain material from two PASC patients. FINDINGS: IDO2 is expressed and active in PBMC from PASC patients, as well as in brain tissue, long after SARS-CoV-2 infection. This is paralleled by autophagy, and in blood cells by reduced mitochondrial functioning, reduced intracellular levels of amino acids and Krebs cycle-related compounds. IDO2 expression and activity is triggered by SARS-CoV-2-infection, but the severity of SARS-CoV-2-induced pathology appears related to the generated specific kynurenine metabolites. Ex vivo, IDO2 expression and autophagy can be halted by an AHR antagonist. INTERPRETATION: SARS-CoV-2 infection triggers long-lasting IDO2 expression, which can be halted by an AHR antagonist. The specific kynurenine catabolites may relate to SARS-CoV-2-induced symptoms and pathology. FUNDING: None.


Assuntos
COVID-19 , Triptofano , Humanos , Cromatografia Líquida , COVID-19/complicações , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Cinurenina , Leucócitos Mononucleares/metabolismo , Síndrome de COVID-19 Pós-Aguda , SARS-CoV-2/metabolismo , Espectrometria de Massas em Tandem , Triptofano/metabolismo
3.
Thorax ; 68(12): 1122-30, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23882022

RESUMO

BACKGROUND: Patients with allergic asthma have exacerbations which are frequently caused by rhinovirus infection. The antiviral tryptophan-catabolising enzyme indoleamine 2,3-dioxygenase (IDO) is induced by interferon-γ and suppressed by Th2 mediators interleukin (IL)-4 and IL-13. We hypothesised that local IDO activity after viral airway infection is lower in patients with allergic asthma than in healthy controls. OBJECTIVE: To determine whether IDO activity differs between patients with allergic asthma and healthy individuals before and after rhinovirus infection. METHODS: Healthy individuals and patients with allergic asthma were experimentally infected with low-dose (10 TCID50) rhinovirus 16. Blood, bronchoalveolar lavage fluid and exhaled breath condensate (for mass spectrometry by UPLC-MS/MS) were obtained before and after rhinovirus challenge. RESULTS: IDO activity was not induced by rhinovirus infection in either group, despite increases in cold scores. However, baseline pulmonary IDO activity was lower in patients with allergic asthma than in healthy individuals. In contrast, systemic tryptophan and its catabolites were markedly higher in patients with allergic asthma. Moreover, systemic quinolinic acid and tryptophan were associated with eosinophil cationic protein (r=0.43 and r=0.78, respectively) and eosinophils (r=0.38 and r=0.58, respectively) in bronchoalveolar lavage fluid and peak asthma symptom scores after rhinovirus challenge (r=0.53 and r=0.64, respectively). CONCLUSIONS: Rhinovirus infection by itself induces no IDO activity, but the reduced pulmonary IDO activity in patients with allergic asthma at baseline may underlie a reduced control of viral infections. Notably, the enhanced systemic catabolism of tryptophan in patients with allergic asthma was strongly related to the outcome of rhinovirus challenge in asthma and may serve as a prognostic factor.


Assuntos
Asma/complicações , Asma/enzimologia , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Infecções por Picornaviridae/complicações , Rhinovirus , Triptofano/sangue , Adulto , Asma/fisiopatologia , Biomarcadores/análise , Biomarcadores/sangue , Testes Respiratórios , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/citologia , Estudos de Casos e Controles , Citocinas/análise , Progressão da Doença , Proteína Catiônica de Eosinófilo/análise , Eosinófilos , Feminino , Humanos , Cinurenina/análise , Cinurenina/sangue , Masculino , Óxido Nítrico/análise , Peroxidase/análise , Infecções por Picornaviridae/virologia , Estudos Prospectivos , Ácido Quinolínico/análise , Ácido Quinolínico/sangue , Triptofano/análise , Adulto Jovem , ortoaminobenzoatos/análise , ortoaminobenzoatos/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA