Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Leukemia ; 37(8): 1600-1610, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37349598

RESUMO

We characterize the metabolic background in distinct Acute Myeloid Leukemias (AMLs), by comparing the metabolism of primary AML blasts isolated at diagnosis with that of normal hematopoietic maturing progenitors, using the Seahorse XF Agilent. Leukemic cells feature lower spare respiratory (SRC) and glycolytic capacities as compared to hematopoietic precursors (i.e. day 7, promyelocytes). According with Proton Leak (PL) values, AML blasts can be grouped in two well defined populations. The AML group with blasts presenting high PL or high basal OXPHOS plus high SRC levels had shorter overall survival time and significantly overexpressed myeloid cell leukemia 1 (MCL1) protein. We demonstrate that MCL1 directly binds to Hexokinase 2 (HK2) on the outer mitochondrial membrane (OMM). Overall, these results suggest that high PL and high SRC plus high basal OXPHOS levels at disease onset, arguably with the concourse of MCL1/HK2 action, are significantly linked with shorter overall survival time in AML. Our data describe a new function for MCL1 protein in AMLs' cells: by forming a complex with HK2, MCL1 co-localizes to VDAC on the OMM, thus inducing glycolysis and OXPHOS, ultimately conferring metabolic plasticity and promoting resistance to therapy.


Assuntos
Hexoquinase , Leucemia Mieloide Aguda , Humanos , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo
2.
Biomolecules ; 13(3)2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36979387

RESUMO

Neutral lipid storage disease type M (NLSD-M) is an ultra-rare, autosomal recessive disorder that causes severe skeletal and cardiac muscle damage and lipid accumulation in all body tissues. In this hereditary pathology, the defective action of the adipose triglyceride lipase (ATGL) enzyme induces the enlargement of cytoplasmic lipid droplets and reduction in the detachment of mono- (MG) and diglycerides (DG). Although the pathogenesis of muscle fiber necrosis is unknown, some studies have shown alterations in cellular energy production, probably because MG and DG, the substrates of Krebs cycle, are less available. No tests have been tried with medium-chain fatty acid molecules to evaluate the anaplerotic effect in NLSD cells. In this study, we evaluated the in vitro effect of triheptanoin (Dojolvi®), a highly purified chemical triglyceride with seven carbon atoms, in fibroblasts obtained from five NLSD-M patients. Glycolytic and mitochondrial functions were determined by Seahorse XF Agylent Technology, and cellular viability and triglyceride content were measured through colorimetric assays. After the addition of triheptanoin, we observed an increase in glycolysis and mitochondrial respiration in all patients compared with healthy controls. These preliminary results show that triheptanoin is able to induce an anaplerotic effect in NLSD-M fibroblasts, paving the way towards new therapeutic strategies.


Assuntos
Glicólise , Lipase , Humanos , Lipase/metabolismo , Triglicerídeos , Fibroblastos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA