Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(11)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38891869

RESUMO

Myxozoa, a unique group of obligate endoparasites within the phylum Cnidaria, can cause emerging diseases in wild and cultured fish populations. Recently, the myxozoan Myxobolus bejeranoi has been identified as a prevalent pathogen infecting the gills of cultured hybrid tilapia, leading to systemic immune suppression and considerable mortality. Here, we employed a proteomic approach to examine the impact of M. bejeranoi infection on fish gills, focusing on the structure of the granulomata, or cyst, formed around the proliferating parasite to prevent its spread to surrounding tissue. Enrichment analysis showed increased immune response and oxidative stress in infected gill tissue, most markedly in the cyst's wall. The intense immune reaction included a consortium of endopeptidase inhibitors, potentially combating the myxozoan arsenal of secreted proteases. Analysis of the cyst's proteome and histology staining indicated that keratin intermediate filaments contribute to its structural rigidity. Moreover, we uncovered skin-specific proteins, including a grainyhead-like transcription factor and a teleost-specific S100 calcium-binding protein that may play a role in epithelial morphogenesis and cysts formation. These findings deepen our understanding of the proteomic elements that grant the cyst its distinctive nature at the critical interface between the fish host and myxozoan parasite.


Assuntos
Doenças dos Peixes , Brânquias , Myxobolus , Tilápia , Animais , Tilápia/parasitologia , Tilápia/imunologia , Tilápia/metabolismo , Doenças dos Peixes/parasitologia , Doenças dos Peixes/imunologia , Brânquias/parasitologia , Brânquias/metabolismo , Proteômica/métodos , Cistos/parasitologia , Cistos/metabolismo , Interações Hospedeiro-Parasita , Doenças Parasitárias em Animais/parasitologia , Doenças Parasitárias em Animais/imunologia , Proteoma/metabolismo , Proteínas de Peixes/metabolismo
2.
J Invertebr Pathol ; 204: 108105, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38614293

RESUMO

Myxozoans are obligate parasites with complex life cycles, typically infecting fish and annelids. Here, we examined annelids from fish farm pond sediments in the Beit Shean Valley, in the Syrian-African Rift Valley, Israel, for myxozoan infections. We examined 1486 oligochaetes, and found 74 (5 %) were infected with actinospore stages. We used mitochondrial 16S sequencing to infer identity of 25 infected annelids as species of Potamothrix, Psammoryctides, Tubifex and Dero. We identified 7 myxozoan types from collective groups Neoactinomyxum and Sphaeractinomyxon, and characterized them by small subunit ribosomal DNA sequencing. The Neoactinomyxum type was genetically most similar (∼93 %) to cyprinid fish-infecting Myxobolus spp. The six Sphaeractinomyxon types were genetically similar (93-100 %) to Mugilid-infecting Myxobolus spp.; with one being the previously unknown actinospore stage of a myxospore that infects mullet from aquaculture from the Israeli coast of the Mediterranean Sea. As the farm pond system is artificial and geographically isolated from the Mediterranean, the presence of at least seven myxozoans in their annelid hosts demonstrates introduction and establishment of these parasites in a novel, brackish environment.


Assuntos
Aquicultura , Myxozoa , Lagoas , Animais , Myxozoa/genética , Myxozoa/fisiologia , Lagoas/parasitologia , Estágios do Ciclo de Vida , Doenças Parasitárias em Animais/parasitologia , Israel , Doenças dos Peixes/parasitologia
3.
Int J Mol Sci ; 24(16)2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37629003

RESUMO

Myxozoa is a unique group of obligate endoparasites in the phylum Cnidaria that can cause emerging diseases in wild and cultured fish populations. Recently, we identified a new myxozoan species, Myxobolus bejeranoi, which infects the gills of cultured tilapia while suppressing host immunity. To uncover the molecular mechanisms underlying this successful parasitic strategy, we conducted transcriptomics analysis of M. bejeranoi throughout the infection. Our results show that histones, which are essential for accelerated cell division, are highly expressed even one day after invasion. As the infection progressed, conserved parasitic genes that are known to modulate the host immune reaction in different parasitic taxa were upregulated. These genes included energy-related glycolytic enzymes, as well as calreticulin, proteases, and miRNA biogenesis proteins. Interestingly, myxozoan calreticulin formed a distinct phylogenetic clade apart from other cnidarians, suggesting a possible function in parasite pathogenesis. Sporogenesis was in its final stages 20 days post-exposure, as spore-specific markers were highly expressed. Lastly, we provide the first catalog of transcription factors in a Myxozoa species, which is minimized compared to free-living cnidarians and is dominated by homeodomain types. Overall, these molecular insights into myxozoan infection support the concept that parasitic strategies are a result of convergent evolution.


Assuntos
Cnidários , Myxobolus , Myxozoa , Parasitos , Animais , Myxozoa/genética , Myxobolus/genética , Cnidários/genética , Calreticulina , Filogenia , Divisão Celular , Peixes
4.
Dev Cell ; 58(15): 1350-1364.e10, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37321215

RESUMO

During aging, the loss of metabolic homeostasis drives a myriad of pathologies. A central regulator of cellular energy, the AMP-activated protein kinase (AMPK), orchestrates organismal metabolism. However, direct genetic manipulations of the AMPK complex in mice have, so far, produced detrimental phenotypes. Here, as an alternative approach, we alter energy homeostasis by manipulating the upstream nucleotide pool. Using the turquoise killifish, we mutate APRT, a key enzyme in AMP biosynthesis, and extend the lifespan of heterozygous males. Next, we apply an integrated omics approach to show that metabolic functions are rejuvenated in old mutants, which also display a fasting-like metabolic profile and resistance to high-fat diet. At the cellular level, heterozygous cells exhibit enhanced nutrient sensitivity, reduced ATP levels, and AMPK activation. Finally, lifelong intermittent fasting abolishes the longevity benefits. Our findings suggest that perturbing AMP biosynthesis may modulate vertebrate lifespan and propose APRT as a promising target for promoting metabolic health.


Assuntos
Proteínas Quinases Ativadas por AMP , Longevidade , Masculino , Animais , Camundongos , Proteínas Quinases Ativadas por AMP/metabolismo , Envelhecimento/metabolismo , Homeostase , Vertebrados/metabolismo , Metabolismo Energético
5.
Parasitology ; 150(6): 524-530, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36896598

RESUMO

Nile × blue tilapia hybrid (Oreochromis niloticus × O. aureus) has become an important food fish in intensive freshwater aquaculture. Recently, the parasite Myxobolus bejeranoi (Cnidaria: Myxozoa) was found to infect hybrid tilapia gills at high prevalence, causing immune suppression and high mortality. Here, we explored additional characteristics of M. bejeranoi­tilapia interaction, which enable efficient proliferation of this parasite inside its specific host. Highly sensitive quantitative polymerase chain reaction (qPCR) and in situ hybridization analyses of fry collected from fertilization ponds provided evidence to an early-life infection of fish by a myxozoan parasite, occurring less than 3 weeks post-fertilization. Because Myxobolus species are highly host-specific, we next compared infection rates in hybrid tilapia and in both its parental species following a 1-week exposure to infectious pond water. Analysis by qPCR and histological sections showed that while blue tilapia was as susceptible to M. bejeranoi as the hybrid, Nile tilapia appeared to be resistant. This is the first report of differential susceptibility of a hybrid fish vs its parental purebreds to a myxozoan parasite. These findings advance our understanding of the relationship between M. bejeranoi and tilapia fish and raise important questions regarding the mechanisms that allow the parasite to distinguish between very closely related species and to infect a specific organ at very early-life stages.


Assuntos
Cnidários , Doenças dos Peixes , Myxobolus , Myxozoa , Parasitos , Tilápia , Animais , Myxozoa/genética , Myxobolus/genética , Especificidade de Hospedeiro , Aquicultura , Doenças dos Peixes/parasitologia
6.
Microorganisms ; 10(10)2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36296170

RESUMO

Myxozoa (Cnidaria) is a large group of microscopic obligate endoparasites that can cause emerging diseases, affecting wild fish populations and fisheries. Recently, the myxozoan Myxobolus bejeranoi was found to infect the gills of hybrid tilapia (Nile tilapia (Oreochromis niloticus) × Jordan/blue tilapia (O. aureus)), causing high morbidity and mortality. Here, we used comparative transcriptomics to elucidate the molecular processes occurring in the fish host following infection by M. bejeranoi. Fish were exposed to pond water containing actinospores for 24 h and the effects of minor, intermediate, and severe infections on the sporulation site, the gills, and on the hematopoietic organs, head kidney and spleen, were compared. Enrichment analysis for GO and KEGG pathways indicated immune system activation in gills at severe infection, whereas in the head kidney a broad immune suppression included deactivation of cytokines and GATA3 transcription factor responsible for T helper cell differentiation. In the spleen, the cytotoxic effector proteins perforin and granzyme B were downregulated and insulin, which may function as an immunomodulatory hormone inducing systemic immune suppression, was upregulated. These findings suggest that M. bejeranoi is a highly efficient parasite that disables the defense mechanisms of its fish host hybrid tilapia.

7.
Parasitol Res ; 117(2): 491-499, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29285565

RESUMO

Myxosporean infections can cause severe damage to commercially grown tilapia. Here, we report a novel myxosporean that was found in gills of Oreochromis aureus male × Oreochromis niloticus female, which is an important aquaculture tilapia hybrid in Israel. Three-month-old fish were found to have cysts located in gill muscle tissue, which were filled with both immature and mature spores. Affected fish displayed higher mortality rate. Spore dimensions (10.8 ± 0.7 µm length × 6.8 ± 0.6 µm width) and molecular characterization using 18S ribosomal DNA revealed that the unknown parasite belongs in the Myxobolus clade. Based on the infection site, spore morphology and molecular characterization, we describe this parasite as Myxobolus bejeranoi n. sp. (MF401455). Phylogenetic analysis showed that the new species is most closely related to two Myxobolus spp. from O. niloticus in Egypt and Ghana.


Assuntos
Doenças dos Peixes/parasitologia , Brânquias/parasitologia , Músculos/parasitologia , Myxobolus/classificação , Myxobolus/genética , Doenças Parasitárias em Animais/parasitologia , Tilápia/parasitologia , Animais , DNA Ribossômico , Feminino , Israel , Masculino , Myxobolus/isolamento & purificação , Filogenia , RNA Ribossômico 18S/genética , Esporos/fisiologia
8.
Front Microbiol ; 7: 1875, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27965628

RESUMO

The genus Aeromonas is ubiquitous in aquatic environments encompassing a broad range of fish and human pathogens. Aeromonas strains are known for their enhanced capacity to acquire and exchange antibiotic resistance genes and therefore, are frequently targeted as indicator bacteria for monitoring antimicrobial resistance in aquatic environments. This study evaluated temporal trends in Aeromonas diversity and antibiotic resistance in two adjacent semi-intensive aquaculture facilities to ascertain the effects of antibiotic treatment on antimicrobial resistance. In the first facility, sulfadiazine-trimethoprim was added prophylactically to fingerling stocks and water column-associated Aeromonas were monitored periodically over an 11-month fish fattening cycle to assess temporal dynamics in taxonomy and antibiotic resistance. In the second facility, Aeromonas were isolated from fish skin ulcers sampled over a 3-year period and from pond water samples to assess associations between pathogenic strains to those in the water column. A total of 1200 Aeromonas isolates were initially screened for sulfadiazine resistance and further screened against five additional antimicrobials. In both facilities, strong correlations were observed between sulfadiazine resistance and trimethoprim and tetracycline resistances, whereas correlations between sulfadiazine resistance and ceftriaxone, gentamicin, and chloramphenicol resistances were low. Multidrug resistant strains as well as sul1, tetA, and intI1 gene-harboring strains were significantly higher in profiles sampled during the fish cycle than those isolated prior to stocking and these genes were extremely abundant in the pathogenic strains. Five phylogenetically distinct Aeromonas clusters were identified using partial rpoD gene sequence analysis. Interestingly, prior to fingerling stocking the diversity of water column strains was high, and representatives from all five clusters were identified, including an A. salmonicida cluster that harbored all characterized fish skin ulcer samples. Subsequent to stocking, diversity was much lower and most water column isolates in both facilities segregated into an A. veronii-associated cluster. This study demonstrated a strong correlation between aquaculture, Aeromonas diversity and antibiotic resistance. It provides strong evidence for linkage between prophylactic and systemic use of antibiotics in aquaculture and the propagation of antibiotic resistance.

9.
Appl Environ Microbiol ; 81(10): 3280-7, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25746990

RESUMO

Nervous necrosis virus (NNV) is a member of the Betanodavirus genus that causes fatal diseases in over 40 species of fish worldwide. Mortality among NNV-infected fish larvae is almost 100%. In order to elucidate the mechanisms responsible for the susceptibility of fish larvae to NNV, we exposed zebrafish larvae to NNV by bath immersion at 2, 4, 6, and 8 days postfertilization (dpf). Here, we demonstrate that developing zebrafish embryos are resistant to NNV at 2 dpf due to the protection afforded by the egg chorion and, to a lesser extent, by the perivitelline fluid. The zebrafish larvae succumbed to NNV infection during a narrow time window around the 4th dpf, while 6- and 8-day-old larvae were much less sensitive, with mortalities of 24% and 28%, respectively.


Assuntos
Doenças dos Peixes/mortalidade , Larva/crescimento & desenvolvimento , Nodaviridae/fisiologia , Infecções por Vírus de RNA/veterinária , Peixe-Zebra/virologia , Animais , Feminino , Fertilização , Doenças dos Peixes/fisiopatologia , Doenças dos Peixes/virologia , Larva/virologia , Masculino , Dados de Sequência Molecular , Infecções por Vírus de RNA/mortalidade , Infecções por Vírus de RNA/fisiopatologia , Infecções por Vírus de RNA/virologia , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/fisiologia
10.
Parasite ; 21: 32, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24986336

RESUMO

Clinostomidae are digeneans characterized by a complex taxonomic history, continuously under revision based on both morphological and molecular analysis. Among the 14 species considered valid so far Clinostomum phalacrocoracis has been well described only at the adult stage, whereas the morphology of the metacercarial stage has been reported only once. During a parasitological survey carried out on 262 wild cichlids sampled from Lake Kinneret (Israel) metacercariae referable to C. phalacrocoracis were found in 18 fingerlings. In this study, we report this clinostomid species for the first time in wild fish from Israel describing the metacercarial stage of Clinostomum phalacrocoracis, coupling its morphological description with molecular analysis carried out on ITS rDNA and COI mtDNA sequences.


Assuntos
Ciclídeos/parasitologia , Doenças dos Peixes/parasitologia , Trematódeos/crescimento & desenvolvimento , Infecções por Trematódeos/veterinária , Animais , Sequência de Bases , DNA de Helmintos/genética , DNA Intergênico/genética , Reservatórios de Doenças/parasitologia , Vetores de Doenças , Complexo IV da Cadeia de Transporte de Elétrons/genética , Doenças dos Peixes/epidemiologia , Israel/epidemiologia , Lagos , Metacercárias/ultraestrutura , Dados de Sequência Molecular , Especificidade de Órgãos , Alinhamento de Sequência , Homologia de Sequência do Ácido Nucleico , Caramujos/parasitologia , Especificidade da Espécie , Tilápia/parasitologia , Trematódeos/genética , Trematódeos/ultraestrutura , Infecções por Trematódeos/epidemiologia , Infecções por Trematódeos/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA