Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Analyst ; 149(6): 1947-1957, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38385166

RESUMO

Advancements in DNA computation have unlocked molecular-scale information processing possibilities, utilizing the intrinsic properties of DNA for complex logical operations with transformative applications in biomedicine. DNA computation shows promise in molecular diagnostics, enabling precise and sensitive detection of genetic mutations and disease biomarkers. Moreover, it holds potential for targeted gene regulation, facilitating personalized therapeutic interventions with enhanced efficacy and reduced side effects. Herein, we have developed six DNAzyme-based logic gates able to process YES, AND, and NOT Boolean logic. The novelty of this work lies in their additional functionalization with a common DNA scaffold for increased cooperativity in input recognition. Moreover, we explored hierarchical input binding to multi-input logic gates, which helped gate optimization. Additionally, we developed a new design of an allosteric hairpin switch used to implement NOT logic. All DNA logic gates achieved the desired true-to-false output signal when detecting a panel of miRNAs, known for their important role in malignancy regulation. This is the first example of DNAzyme-based logic gates having all input-recognizing elements integrated in a single DNA nanostructure, which provides new opportunities for building DNA automatons for diagnosis and therapy of human diseases.


Assuntos
DNA Catalítico , MicroRNAs , Nanoestruturas , Humanos , DNA Catalítico/química , MicroRNAs/genética , DNA/genética , DNA/química , Lógica , Computadores Moleculares
2.
Reprod Sci ; 30(3): 772-786, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35764857

RESUMO

Polycystic ovarian syndrome (PCOS) can cause infertility in females due to hyperandrogenism and neuroendocrine abnormalities. The aim of this study is to decipher the impact of endocrine variables, hyperandogenism, insulin resistance, oxidative stress, and dietary conditions in PCOS conditions, subsequently to depict the role of epigenetic factors relative to phenotypic manifestations in PCOS conditions. We have reviewed several metabolic milieus pertinent to PCOS conditions. Comparative efficacies of various PCOS therapies, and recent clinical recommendations for the effective management of PCOS and role of metabolic/endocrine variables in PCOS conditions were described. Comparative therapeutic effects were vividly delineated according to the variable pathophysiology and internal variables during PCOS syndrome on the female body through the formation of cascade of endocrine pathology, which affects working capacity and fosters redox stress-induced cardiovascular, neural, and liver abnormalities. GLP-1 agonists, insulin sensitizers (metformin), and diet and exercise regimens efficacy were explained in enhancing the fertility outcomes among the overweight or obese females with PCOS. Comprehensive appraisal of DNA methylation as epigenetic changes and the manifestations of methylated genes in PCOS conditions were discussed particularly to screen novel molecular targets for developing efficient diagnostic indicators for predicting PCOS risk or its progression. Due to the reversible nature of epigenetic modifications, it is possible to screen the "druggable" regions to target or to correct abnormalities in the gene expression subsequently to develop chromatin-modifying therapies against PCOS.


Assuntos
Hiperandrogenismo , Infertilidade , Resistência à Insulina , Metformina , Síndrome do Ovário Policístico , Feminino , Humanos , Síndrome do Ovário Policístico/tratamento farmacológico , Síndrome do Ovário Policístico/genética , Síndrome do Ovário Policístico/metabolismo , Hiperandrogenismo/tratamento farmacológico , Infertilidade/tratamento farmacológico , Metformina/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA