Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Obesity (Silver Spring) ; 32(5): 959-968, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38600047

RESUMO

OBJECTIVE: The objective of this study was to investigate body composition changes with weight cycling (WC) among adult C57BL/6J mice with diet-induced obesity. METHODS: A total of 555 single-housed mice were fed a high-fat diet ad libitum (AL) from 8 to 43 weeks of age. The 200 heaviest mice of each sex were randomized to the following four groups: ever obese (EO, continued AL feeding); obese weight loser (OWL, calorie-restricted); obese weight loser moderate (OWLM, body weight halfway between EO and OWL); and WC (diet restricted to OWL followed by AL refeeding cycles). Body weight and composition data were collected. Linear regression was used to calculate residuals between predicted and observed fat mass. Linear mixed models were used to compare diet groups. RESULTS: Although weight loss and regain resulted in changes in body weight and composition, fat mass, body weight, and relative body fat were not significantly greater for the WC group compared with the EO group. During long-term calorie restriction, males (but not females) in the OWLM group remained relatively fatter than the EO group. CONCLUSIONS: WC did not increase body weight or relative fat mass for middle-aged, high-fat diet-fed adult mice. However, long-term moderate calorie restriction resulted in lower body weight but greater "relative" fat in male mice.

2.
Nat Metab ; 5(6): 955-967, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37365290

RESUMO

Mitochondrial diseases represent a spectrum of disorders caused by impaired mitochondrial function, ranging in severity from mortality during infancy to progressive adult-onset disease. Mitochondrial dysfunction is also recognized as a molecular hallmark of the biological ageing process. Rapamycin, a drug that increases lifespan and health during normative ageing, also increases survival and reduces neurological symptoms in a mouse model of the severe mitochondrial disease Leigh syndrome. The Ndufs4 knockout (Ndufs4-/-) mouse lacks the complex I subunit NDUFS4 and shows rapid onset and progression of neurodegeneration mimicking patients with Leigh syndrome. Here we show that another drug that extends lifespan and delays normative ageing in mice, acarbose, also suppresses symptoms of disease and improves survival of Ndufs4-/- mice. Unlike rapamycin, acarbose rescues disease phenotypes independently of inhibition of the mechanistic target of rapamycin. Furthermore, rapamycin and acarbose have additive effects in delaying neurological symptoms and increasing maximum lifespan in Ndufs4-/- mice. We find that acarbose remodels the intestinal microbiome and alters the production of short-chain fatty acids. Supplementation with tributyrin, a source of butyric acid, recapitulates some effects of acarbose on lifespan and disease progression, while depletion of the endogenous microbiome in Ndufs4-/- mice appears to fully recapitulate the effects of acarbose on healthspan and lifespan in these animals. To our knowledge, this study provides the first evidence that alteration of the gut microbiome plays a significant role in severe mitochondrial disease and provides further support for the model that biological ageing and severe mitochondrial disorders share underlying common mechanisms.


Assuntos
Doença de Leigh , Doenças Mitocondriais , Camundongos , Animais , Doença de Leigh/tratamento farmacológico , Doença de Leigh/genética , Acarbose/farmacologia , Acarbose/uso terapêutico , Doenças Mitocondriais/tratamento farmacológico , Mitocôndrias/genética , Sirolimo/farmacologia , Sirolimo/uso terapêutico , Modelos Animais de Doenças , Complexo I de Transporte de Elétrons
4.
Aging (Albany NY) ; 15(6): 1748-1767, 2023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36947702

RESUMO

Aging is accompanied by increased susceptibility to infections including with viral pathogens resulting in higher morbidity and mortality among the elderly. Significant changes in host metabolism can take place following virus infection. Efficient immune responses are energetically costly, and viruses divert host molecular resources to promote their own replication. Virus-induced metabolic reprogramming could impact infection outcomes, however, how this is affected by aging and impacts organismal survival remains poorly understood. RNA virus infection of Drosophila melanogaster with Flock House virus (FHV) is an effective model to study antiviral responses with age, where older flies die faster than younger flies due to impaired disease tolerance. Using this aged host-virus model, we conducted longitudinal, single-fly respirometry studies to determine if metabolism impacts infection outcomes. Analysis using linear mixed models on Oxygen Consumption Rate (OCR) following the first 72-hours post-infection showed that FHV modulates respiration, but age has no significant effect on OCR. However, the longitudinal assessment revealed that OCR in young flies progressively and significantly decreases, while OCR in aged flies remains constant throughout the three days of the experiment. Furthermore, we found that the OCR signature at 24-hours varied in response to both experimental treatment and survival status. FHV-injected flies that died prior to 48- or 72-hours measurements had a lower OCR compared to survivors at 48-hours. Our findings suggest the host's metabolic profile could influence the outcome of viral infections.


Assuntos
Nodaviridae , Vírus de RNA , Viroses , Animais , Masculino , Drosophila melanogaster/genética , Vírus de RNA/genética , Nodaviridae/genética , Consumo de Oxigênio
5.
Aging Cell ; 22(4): e13787, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36734122

RESUMO

Interventions for animal lifespan extension like caloric restriction (CR) have identified physiologic and biochemical pathways related to hunger and energy-sensing status as possible contributors, but mechanisms have not been fully elucidated. Prior studies using ghrelin agonists show greater food intake but no effect on lifespan in rodent models. This experiment in male C57BL/6J mice tested the influence of ghrelin agonism for perceived hunger, in the absence of CR, on longevity. Mice aged 4 weeks were allowed to acclimate for 2 weeks prior to being assigned (N = 60/group). Prior to lights off daily (12:12 cycle), animals were fed a ghrelin agonist pill (LY444711; Eli Lilly) or a placebo control (Ctrl) until death. Treatment (GhrAg) animals were pair-fed daily based on the group mean food intake consumed by Ctrl (ad libitum feeding) the prior week. Results indicate an increased lifespan effect (log-rank p = 0.0032) for GhrAg versus placebo Ctrl, which weighed significantly more than GhrAg (adjusted for baseline weight). Further studies are needed to determine the full scope of effects of this ghrelin agonist, either directly via increased ghrelin receptor signaling or indirectly via other hypothalamic, systemic, or tissue-specific mechanisms.


Assuntos
Grelina , Longevidade , Animais , Masculino , Camundongos , Restrição Calórica , Grelina/agonistas , Camundongos Endogâmicos C57BL
6.
Front Nutr ; 9: 1041026, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36458175

RESUMO

Exogenous ketone ester supplementation provides a means to increase circulating ketone concentrations without the dietary challenges imposed by ketogenic diets. Our group has shown that oral R,S-1,3, butanediol diacetoacetate (BD-AcAc2) consumption results in body weight loss or maintenance with moderate increases in circulating ketones. We have previously shown a diet consisting of 25% BD-AcAc2 can maintain lean body mass (LBM) and induce fat mass (FM) loss in young, healthy male mice, but the underlying mechanisms are still unknown. Therefore, the purpose of this study was to determine if a diet consisting of 25% BD-AcAc2 (ketone ester, KE) would alter body composition, transcriptional regulation, the proteome, and the lipidome of skeletal muscle in aged mice. We hypothesized that the KE group would remain weight stable with improvements in body composition compared to controls, resulting in a healthy aging phenotype. Male C57BL/6J mice (n = 16) were purchased from Jackson Laboratories at 72 weeks of age. After 1 week of acclimation, mice were weighed and randomly assigned to one of two groups (n = 8 per group): control (CON) or KE. A significant group by time interaction was observed for body weight (P < 0.001), with KE fed mice weighing significantly less than CON. FM increased over time in the control group but was unchanged in the KE group. Furthermore, LBM was not different between CON and KE mice despite KE mice weighing less than CON mice. Transcriptional analysis of skeletal muscle identified 6 genes that were significantly higher and 21 genes that were significantly lower in the KE group compared to CON. Lipidomic analysis of skeletal muscle identified no differences between groups for any lipid species, except for fatty acyl chains in triacylglycerol which was 46% lower in the KE group. Proteomics analysis identified 44 proteins that were different between groups, of which 11 were lower and 33 were higher in the KE group compared to CON. In conclusion, 72-week-old male mice consuming the exogenous KE, BD-AcAc2, had lower age-related gains in body weight and FM compared to CON mice. Furthermore, transcriptional and proteomics data suggest a signature in skeletal muscle of KE-treated mice consistent with markers of improved skeletal muscle regeneration, improved electron transport chain utilization, and increased insulin sensitivity.

7.
Front Nutr ; 9: 929446, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36105576

RESUMO

Investigations into the causative role that western dietary patterns have on obesity and disease pathogenesis have speculated that quality and quantity of dietary fats and/or carbohydrates have a predictive role in the development of these disorders. Standard reference diets such as the AIN-93 rodent diet have historically been used to promote animal health and reduce variation of results across experiments, rather than model modern human dietary habits or nutrition-related pathologies. In rodents high-fat diets (HFDs) became a classic tool to investigate diet-induced obesity (DIO). These murine diets often relied on a single fat source with the most DIO consistent HFDs containing levels of fat up to 45-60% (kcal), higher than the reported human intake of 33-35% (kcal). More recently, researchers are formulating experimental animal (pre-clinical) diets that reflect mean human macro- and micronutrient consumption levels described by the National Health and Nutrition Examination Survey (NHANES). These diets attempt to integrate relevant ingredient sources and levels of nutrients; however, they most often fail to include high-fructose corn syrup (HFCS) as a source of dietary carbohydrate. We have formulated a modified Standard American Diet (mSAD) that incorporates relevant levels and sources of nutrient classes, including dietary HFCS, to assess the basal physiologies associated with mSAD consumption. Mice proffered the mSAD for 15 weeks displayed a phenotype consistent with metabolic syndrome, exhibiting increased adiposity, fasting hyperglycemia with impaired glucose and insulin tolerance. Metabolic alterations were evidenced at the tissue level as crown-like structures (CLS) in adipose tissue and fatty acid deposition in the liver, and targeted 16S rRNA metagenomics revealed microbial compositional shifts between dietary groups. This study suggests diet quality significantly affects metabolic homeostasis, emphasizing the importance of developing relevant pre-clinical diets to investigate chronic diseases highly impacted by western dietary consumption patterns.

8.
Acta Pharm Sin B ; 12(2): 511-531, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35256932

RESUMO

Aging is by far the most prominent risk factor for Alzheimer's disease (AD), and both aging and AD are associated with apparent metabolic alterations. As developing effective therapeutic interventions to treat AD is clearly in urgent need, the impact of modulating whole-body and intracellular metabolism in preclinical models and in human patients, on disease pathogenesis, have been explored. There is also an increasing awareness of differential risk and potential targeting strategies related to biological sex, microbiome, and circadian regulation. As a major part of intracellular metabolism, mitochondrial bioenergetics, mitochondrial quality-control mechanisms, and mitochondria-linked inflammatory responses have been considered for AD therapeutic interventions. This review summarizes and highlights these efforts.

9.
Am J Clin Nutr ; 115(6): 1626-1636, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35179193

RESUMO

BACKGROUND: Epidemiologic observations suggest increased potato consumption correlates with weight gain, adiposity, and diabetes risk, whereas nut consumption is associated with weight control and metabolic health. Randomized controlled trial (RCT) data indicate humans respond to changes in energy intake in single dietary components and compensate for extra energy consumed. OBJECTIVES: We completed an RCT testing whether increased daily potato consumption influences energy balance [specifically, fat mass (FM)] compared with calorie-matched almond consumption. METHODS: A 30-d RCT of 180 adults prescribed calorie-matched (300 kcal/d, n = 60 participants/group) than consumed 1 of the following: 1) almonds (almond group), 2) French fries (potato group), or 3) French fries with herb/spices mix (potato + herb/spices group). Baseline and 30-d FM were measured by DXA (primary outcome), with secondary outcomes including body weight and carbohydrate metabolism markers [glycated hemoglobin (HbA1c), fasting blood glucose and insulin, HOMA-IR)]. A subset of 5 participants/group participated in a postprandial meal-based tolerance test. RESULTS: A total of 180 participants were randomly assigned [gender: 67.8% female; mean ± SD age: 30.4 ± 8.7 y; BMI (in kg/m2): 26.1 ± 4.2; and weight: 75.6 ± 15.4 kg], with 12 dropouts and 3 terminations. No significantly different FM changes were observed between almond and potato consumption [combined ± herb/spices; mean ± SE almond: 230.87 ± 114.01 g; potato: 123.73 ± 86.09 g; P = 0.443], fasting glucose (P = 0.985), insulin (P = 0.082), HOMA-IR (P = 0.080), or HbA1c (P = 0.269). Body weight change was not significantly different in the potato groups combined compared with the almond group (P = 0.116), but was significantly different among the 3 groups (P = 0.014; almond: 0.49 ± 0.20 kg; potato: -0.24 ± 0.20 kg; potato + herb/spices: 0.47 ± 0.21 kg). In meal tests, significantly lower post-prandial glucose and insulin responses to almonds compared with potatoes were observed (P = 0.046, P = 0.006, respectively), with potato + herb/spices having intermediate effects. CONCLUSION: There were no significant differences in FM or in glucoregulatory biomarkers after 30 d of potato consumption compared with almonds. Results do not support a causal relation between increased French fried potato consumption and the negative health outcomes studied. This trial was registered at clinicaltrials.gov as NCT03518515.


Assuntos
Prunus dulcis , Solanum tuberosum , Adulto , Biomarcadores , Glicemia/metabolismo , Feminino , Glucose , Hemoglobinas Glicadas , Humanos , Insulina , Masculino , Obesidade , Prunus dulcis/metabolismo , Adulto Jovem
10.
Nat Aging ; 2(12): 1101-1111, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-37063472

RESUMO

Investigators traditionally use randomized designs and corresponding analysis procedures to make causal inferences about the effects of interventions, assuming independence between an individual's outcome and treatment assignment and the outcomes of other individuals in the study. Often, such independence may not hold. We provide examples of interdependency in model organism studies and human trials and group effects in aging research and then discuss methodologic issues and solutions. We group methodologic issues as they pertain to (1) single-stage individually randomized trials; (2) cluster-randomized controlled trials; (3) pseudo-cluster-randomized trials; (4) individually randomized group treatment; and (5) two-stage randomized designs. Although we present possible strategies for design and analysis to improve the rigor, accuracy and reproducibility of the science, we also acknowledge real-world constraints. Consequences of nonadherence, differential attrition or missing data, unintended exposure to multiple treatments and other practical realities can be reduced with careful planning, proper study designs and best practices.


Assuntos
Gerociência , Humanos , Animais , Camundongos , Reprodutibilidade dos Testes , Distribuição Aleatória , Causalidade
11.
Geroscience ; 43(5): 2149-2160, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34304389

RESUMO

The UAB Nathan Shock Center focuses on comparative energetics and aging. Energetics, as defined for this purpose, encompasses the causes, mechanisms, and consequences of the acquisition, storage, and use of metabolizable energy. Comparative energetics is the study of metabolic processes at multiple scales and across multiple species as it relates to health and aging. The link between energetics and aging is increasingly understood in terms of dysregulated mitochondrial function, altered metabolic signaling, and aberrant nutrient responsiveness with increasing age. The center offers world-class expertise in comprehensive, integrated energetic assessment and analysis from the level of the organelle to the organism and across species from the size of worms to rats as well as state-of-the-art data analytics. The range of services offered by our three research cores, (1) The Organismal Energetics Core, (2) Mitometabolism Core, and (3) Data Analytics Core, is described herein.


Assuntos
Envelhecimento , Mitocôndrias , Animais , Ratos , Transdução de Sinais
12.
Front Neurosci ; 15: 669410, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34121997

RESUMO

The neurobiological mechanisms that mediate psychiatric comorbidities associated with metabolic disorders such as obesity, metabolic syndrome and diabetes remain obscure. High fructose corn syrup (HFCS) is widely used in beverages and is often included in food products with moderate or high fat content that have been linked to many serious health issues including diabetes and obesity. However, the impact of such foods on the brain has not been fully characterized. Here, we evaluated the effects of long-term consumption of a HFCS-Moderate Fat diet (HFCS-MFD) on behavior, neuronal signal transduction, gut microbiota, and serum metabolomic profile in mice to better understand how its consumption and resulting obesity and metabolic alterations relate to behavioral dysfunction. Mice fed HFCS-MFD for 16 weeks displayed enhanced anxiogenesis, increased behavioral despair, and impaired social interactions. Furthermore, the HFCS-MFD induced gut microbiota dysbiosis and lowered serum levels of serotonin and its tryptophan-based precursors. Importantly, the HFCS-MFD altered neuronal signaling in the ventral striatum including reduced inhibitory phosphorylation of glycogen synthase kinase 3ß (GSK3ß), increased expression of ΔFosB, increased Cdk5-dependent phosphorylation of DARPP-32, and reduced PKA-dependent phosphorylation of the GluR1 subunit of the AMPA receptor. These findings suggest that HFCS-MFD-induced changes in the gut microbiota and neuroactive metabolites may contribute to maladaptive alterations in ventral striatal function that underlie neurobehavioral impairment. While future studies are essential to further evaluate the interplay between these factors in obesity and metabolic syndrome-associated behavioral comorbidities, these data underscore the important role of peripheral-CNS interactions in diet-induced behavioral and brain function. This study also highlights the clinical need to address neurobehavioral comorbidities associated with obesity and metabolic syndrome.

13.
PLoS One ; 16(5): e0251087, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33956876

RESUMO

BACKGROUND/OBJECTIVE: Weight loss is a predictor of shorter survival in amyotrophic lateral sclerosis (ALS). We performed serial measures of body composition using Dual-energy X-ray Absorptiometry (DEXA) in ALS patients to explore its utility as a biomarker of disease progression. METHODS: DEXA data were obtained from participants with ALS (enrollment, at 6- and 12- months follow ups) and Parkinson's disease (enrollment and at 4-month follow up) as a comparator group. Body mass index, total lean mass index, appendicular lean mass index, total fat mass index, and percentage body fat at enrollment were compared between the ALS and PD cohorts and age-matched normative data obtained from the National Health and Nutrition Examination Survey database. Estimated monthly changes of body composition measures in the ALS cohort were compared to those of the PD cohort and were correlated with disease progression measured by the Revised Amyotrophic Lateral Sclerosis Functional Rating Scale (ALSFRS-R). RESULTS: The ALS cohort (N = 20) had lower baseline total and appendicular lean mass indices compared to the PD cohort (N = 20) and general population. Loss in total and appendicular lean masses were found to be significantly associated with follow-up time. Low baseline percentage body fat (r = 0.72, p = 0.04), loss of percentage body fat (r = 0.81, p = 0.01), and total fat mass index (r = 0.73, p = 0.04) during follow up correlated significantly with monthly decline of ALSFRS-R scores in ALS cohort who had 2 or more follow-ups (N = 8). CONCLUSION: Measurement of body composition with DEXA might serve as a biomarker for rapid disease progression in ALS.


Assuntos
Tecido Adiposo/patologia , Esclerose Lateral Amiotrófica/patologia , Absorciometria de Fóton , Tecido Adiposo/diagnóstico por imagem , Esclerose Lateral Amiotrófica/diagnóstico por imagem , Biomarcadores , Índice de Massa Corporal , Progressão da Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos
14.
Genes Cancer ; 12: 28-38, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33884104

RESUMO

Prophylactic cranial irradiation (PCI) can reduce the incidence of brain metastasis and improve overall survival in some patients with acute lymphoblastic leukemia or small-cell lung cancer. We examined the potential effects of PCI in a mouse model of breast cancer brain metastasis. The HER2+ inflammatory breast cancer cell line MDA-IBC3 was labeled with green fluorescent protein and injected via tail-vein into female SCID/Beige mice. Mice were then given 0 Gy or 4 Gy of whole-brain irradiation 2 days before tumor-cell injection or 5 days, 3 weeks, or 6 weeks after tumor-cell injection. Mice were sacrificed 4-weeks or 8-weeks after injection and brain tissues were examined for metastasis by fluorescent stereomicroscopy. In the unirradiated control group, brain metastases were present in 77% of mice at 4 weeks and in 90% of mice at 8 weeks; by comparison, rates for the group given PCI at 5 days after tumor-cell injection were 20% at 4 weeks (p=0.01) and 30% at 8 weeks (p=0.02). The PCI group also had fewer brain metastases per mouse at 4 weeks (p=0.03) and 8 weeks (p=0.006) versus the unirradiated control as well as a lower metastatic burden (p=0.01). Irradiation given either before tumor-cell injection or 3-6 weeks afterward had no significant effect on brain metastases compared to the unirradiated control. These results underscore the importance of timing for irradiating subclinical disease. Clinical whole brain strategies to target subclinical brain disease as safely as possible may warrant further study.

15.
Geroscience ; 43(2): 941-964, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33015753

RESUMO

Yeast cells survive in stationary phase culture by entering quiescence, which is measured by colony-forming capacity upon nutrient re-exposure. Yeast chronological lifespan (CLS) studies, employing the comprehensive collection of gene knockout strains, have correlated weakly between independent laboratories, which is hypothesized to reflect differential interaction between the deleted genes, auxotrophy, media composition, and other assay conditions influencing quiescence. This hypothesis was investigated by high-throughput quiescence profiling of the parental prototrophic strain, from which the gene deletion strain libraries were constructed, and all possible auxotrophic allele combinations in that background. Defined media resembling human cell culture media promoted long-term quiescence and was used to assess effects of glucose, ammonium sulfate, auxotrophic nutrient availability, target of rapamycin signaling, and replication stress. Frequent, high-replicate measurements of colony-forming capacity from cultures aged past 60 days provided profiles of quiescence phenomena such as gasping and hormesis. Media acidification was assayed in parallel to assess correlation. Influences of leucine, methionine, glucose, and ammonium sulfate metabolism were clarified, and a role for lysine metabolism newly characterized, while histidine and uracil perturbations had less impact. Interactions occurred between glucose, ammonium sulfate, auxotrophy, auxotrophic nutrient limitation, aeration, TOR signaling, and/or replication stress. Weak correlation existed between media acidification and maintenance of quiescence. In summary, experimental factors, uncontrolled across previous genome-wide yeast CLS studies, influence quiescence and interact extensively, revealing quiescence as a complex metabolic and developmental process that should be studied in a prototrophic context, omitting ammonium sulfate from defined media, and employing highly replicable protocols.


Assuntos
Longevidade , Saccharomyces cerevisiae , Idoso , Meios de Cultura , Glucose , Humanos , Nutrientes , Saccharomyces cerevisiae/genética
16.
Geroscience ; 43(3): 1123-1133, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33006707

RESUMO

The field of aging research has grown rapidly over the last half-century, with advancement of scientific technologies to interrogate mechanisms underlying the benefit of life-extending interventions like calorie restriction (CR). Coincident with this increase in knowledge has been the rise of obesity and type 2 diabetes (T2D), both associated with increased morbidity and mortality. Given the difficulty in practicing long-term CR, a search for compounds (CR mimetics) which could recapitulate the health and longevity benefits without requiring food intake reductions was proposed. Alpha-glucosidase inhibitors (AGIs) are compounds that function predominantly within the gastrointestinal tract to inhibit α-glucosidase and α-amylase enzymatic digestion of complex carbohydrates, delaying and decreasing monosaccharide uptake from the gut in the treatment of T2D. Acarbose, an AGI, has been shown in pre-clinical models to increase lifespan (greater longevity benefits in males), with decreased body weight gain independent of calorie intake reduction. The CR mimetic benefits of acarbose are further supported by clinical findings beyond T2D including the risk for other age-related diseases (e.g., cancer, cardiovascular). Open questions remain regarding the exclusivity of acarbose relative to other AGIs, potential off-target effects, and combination with other therapies for healthy aging and longevity extension. Given the promising results in pre-clinical models (even in the absence of T2D), a unique mechanism of action and multiple age-related reduced disease risks that have been reported with acarbose, support for clinical trials with acarbose focusing on aging-related outcomes and incorporating biological sex, age at treatment initiation, and T2D-dependence within the design is warranted.


Assuntos
Acarbose , Diabetes Mellitus Tipo 2 , Acarbose/uso terapêutico , Restrição Calórica , Diabetes Mellitus Tipo 2/prevenção & controle , Inibidores de Glicosídeo Hidrolases/uso terapêutico , Humanos , Longevidade , Masculino
17.
J Biol Chem ; 296: 100125, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33243834

RESUMO

Caloric restriction (CR) improves health span and life span of organisms ranging from yeast to mammals. Understanding the mechanisms involved will uncover future interventions for aging-associated diseases. In budding yeast, Saccharomyces cerevisiae, CR is commonly defined by reduced glucose in the growth medium, which extends both replicative and chronological life span (CLS). We found that conditioned media collected from stationary-phase CR cultures extended CLS when supplemented into nonrestricted (NR) cultures, suggesting a potential cell-nonautonomous mechanism of CR-induced life span regulation. Chromatography and untargeted metabolomics of the conditioned media, as well as transcriptional responses associated with the longevity effect, pointed to specific amino acids enriched in the CR conditioned media (CRCM) as functional molecules, with L-serine being a particularly strong candidate. Indeed, supplementing L-serine into NR cultures extended CLS through a mechanism dependent on the one-carbon metabolism pathway, thus implicating this conserved and central metabolic hub in life span regulation.


Assuntos
Restrição Calórica , Carbono/metabolismo , Saccharomyces cerevisiae/metabolismo , Serina/metabolismo , Ciclo Celular/fisiologia , Meios de Cultura , Replicação do DNA , Longevidade , Metaboloma , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/crescimento & desenvolvimento
18.
Cancers (Basel) ; 12(10)2020 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-33036247

RESUMO

Although immune checkpoint inhibitors and targeted therapeutics have changed the landscape of treatment for renal cell carcinoma (RCC), most patients do not experience significant clinical benefits. Emerging preclinical studies report that nutrition-based interventions and glucose-regulating agents can improve therapeutic efficacy. However, the impact of such agents on therapeutic efficacy in metastatic kidney cancer remains unclear. Here, we examined acarbose, an alpha-glucosidase inhibitor and antidiabetic agent, in a preclinical model of metastatic kidney cancer. We found that acarbose blunted postprandial blood glucose elevations in lean, nondiabetic mice and impeded the growth of orthotopic renal tumors, an outcome that was reversed by exogenous glucose administration. Delayed renal tumor outgrowth in mice on acarbose occurred in a CD8 T cell-dependent manner. Tumors from these mice exhibited increased frequencies of CD8 T cells that retained production of IFNγ, TNFα, perforin, and granzyme B. Combining acarbose with either anti-PD-1 or the mammalian target of rapamycin inhibitor, rapamycin, significantly reduced lung metastases relative to control mice on the same therapies. Our findings in mice suggest that combining acarbose with current RCC therapeutics may improve outcomes, warranting further study to determine whether acarbose can achieve similar responses in advanced RCC patients in a safe and likely cost-effective manner.

19.
JCI Insight ; 5(21)2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-32990681

RESUMO

Canagliflozin (Cana) is an FDA-approved diabetes drug that protects against cardiovascular and kidney diseases. It also inhibits the sodium glucose transporter 2 by blocking renal reuptake and intestinal absorption of glucose. In the context of the mouse Interventions Testing Program, genetically heterogeneous mice were given chow containing Cana at 180 ppm at 7 months of age until their death. Cana extended median survival of male mice by 14%. Cana also increased by 9% the age for 90th percentile survival, with parallel effects seen at each of 3 test sites. Neither the distribution of inferred cause of death nor incidental pathology findings at end-of-life necropsies were altered by Cana. Moreover, although no life span benefits were seen in female mice, Cana led to lower fasting glucose and improved glucose tolerance in both sexes, diminishing fat mass in females only. Therefore, the life span benefit of Cana is likely to reflect blunting of peak glucose levels, because similar longevity effects are seen in male mice given acarbose, a diabetes drug that blocks glucose surges through a distinct mechanism, i.e., slowing breakdown of carbohydrate in the intestine. Interventions that control daily peak glucose levels deserve attention as possible preventive medicines to protect from a wide range of late-life neoplastic and degenerative diseases.


Assuntos
Glicemia/análise , Canagliflozina/farmacologia , Intolerância à Glucose/tratamento farmacológico , Longevidade , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Animais , Feminino , Intolerância à Glucose/metabolismo , Intolerância à Glucose/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Fatores Sexuais
20.
Obesity (Silver Spring) ; 28(8): 1447-1455, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32618116

RESUMO

OBJECTIVE: The aim of this study was to examine the effects of a ketone ester (KE)-supplemented diet on energy expenditure (EE) and adiposity in mice housed at 23 °C versus thermoneutrality (30 °C), in which sympathetic nervous system activity is diminished. METHODS: Thirty-two 10-week-old male C57BL/6J mice were assigned to 1 of 4 groups (n = 8 per group): 30% KE diet + 23 °C (KE23), control (CON) diet + 23 °C (CON23), 30% KE diet + 30 °C (KE30), or CON diet + 30 °C (CON30). CON mice were pair-fed to the average intake of mice consuming the KE diet (ad libitum) for 8 weeks. Body composition and components of energy balance were measured at completion of the study. RESULTS: CON23 (mean ± SD, 26.0 ± 1.6 g) and CON30 (29.7 ± 1.4 g) mice weighed more than KE groups (P < 0.03 for both) and were also different from each other (CON23 vs. CON30, P < 0.01). However, KE23 (23.4 ± 2.7 g) and KE30 (23.1 ± 1.9 g) mice were not different in body weight. As expected, food intake at 30 °C (2.0 ± 0.3 g/d) was lower than at 23 °C (2.6 ± 0.3 g/d, P < 0.01). Diet did not influence resting and total EE, but mice housed at 30 °C had lower EE compared with mice at 23 °C (P < 0.01). CONCLUSIONS: Dietary KEs attenuate body weight gain at standard (23 °C) and thermoneutral (30 °C) housing temperatures, and this effect is not mediated by increased EE under these conditions.


Assuntos
Adiposidade/fisiologia , Peso Corporal/efeitos dos fármacos , Ésteres/metabolismo , Animais , Suplementos Nutricionais , Modelos Animais de Doenças , Metabolismo Energético , Masculino , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA