RESUMO
Sulfate is an important anion as sulfonation is essential in modulation of several compounds, such as exogens, polysaccharide chains of proteoglycans, cholesterol or cholesterol derivatives and tyrosine residues of several proteins. Sulfonation requires the presence of both the sulfate donor 3'-phosphoadenosine-5'-phosphosulfate (PAPS) and a sulfotransferase. Genetic disorders affecting sulfonation, associated with skeletal abnormalities, impaired neurological development and endocrinopathies, demonstrate the importance of sulfate. Yet sulfate is not measured in clinical practice. This review addresses sulfate metabolism and consequences of sulfonation defects, how to measure sulfate and why we should measure sulfate more often.
RESUMO
Two siblings, presenting with a neurometabolic phenotype, were identified with 5, 10-methenyltetrahydrofolate synthetase (MTHFS) deficiency. Whole genome sequencing in both patients demonstrated an homozygous MTHFS variant NM_006441.3(MTHFS):c.434G > A, p.Arg145Gin, which has been described before. At baseline, both patients showed moderate hyperhomocysteinemia, decreased 5-methyltetrahydrofolate (5MTHF), and increased 5-formyltetrahydrofolate (5-FTHF) in whole blood. In CSF, 5MTHF levels were in the low-normal range and 5-FTHF was strongly increased. In our novel enzyme assay, MTHFS activity was deficient in cultured fibroblasts in both sisters. Oral treatment was initiated with escalating dose of 5-methyltetrahydrofolate (5MTHF) up to 12 mg and hydroxycobalamin 5 mg daily. Plasma homocysteine normalized and 5MTHF became elevated in the blood of both patients. The elevated 5FTHF levels increased further on treatment in blood and CSF. This regimen resulted in some clinical improvement of patient 1. In patient 2, the clinical benefits of 5MTHF supplementation were less obvious. It seems plausible that the alleviation of the deficient 5MTHF levels and normalization of homocysteine in blood are of some clinical benefit. On the other hand, the very high levels of 5FTHF may well be detrimental and may prompt us to decrease the dose of 5MTHF. In addition, we hypothesize that the crippled MTHFS enzyme may destabilize the purinosome, which is presumably not ameliorated by 5MTHF.
RESUMO
Sulfate is the fourth most abundant anion in human plasma but is not measured in clinical practice and little is known about the consequences of sulfate deficiency. Nevertheless, sulfation plays an essential role in the modulation of numerous compounds, including proteoglycans and steroids. We report the first patient with a homozygous loss-of-function variant in the SLC13A1 gene, encoding a renal and intestinal sulfate transporter, which is essential for maintaining plasma sulfate levels. The homozygous (Arg12Ter) variant in SLC13A1 was found by exome sequencing performed in a patient with unexplained skeletal dysplasia. The main clinical features were enlargement of joints and spondylo-epi-metaphyseal radiological abnormalities in early childhood, which improved with age. In addition, autistic features were noted. We found profound hyposulfatemia due to complete loss of renal sulfate reabsorption. Cholesterol sulfate was reduced. Intravenous N-acetylcysteine administration temporarily restored plasma sulfate levels. We conclude that loss of the SLC13A1 gene leads to profound hypersulfaturia and hyposulfatemia, which is mainly associated with abnormal skeletal development, possibly predisposing to degenerative bone and joint disease. The diagnosis might be easily missed and more frequent.
Assuntos
Sulfatos , Pré-Escolar , Humanos , Transportadores de Sulfato/genéticaRESUMO
Aminoacylation of transfer RNA (tRNA) is a key step in protein biosynthesis, carried out by highly specific aminoacyl-tRNA synthetases (ARSs). ARSs have been implicated in autosomal dominant and autosomal recessive human disorders. Autosomal dominant variants in tryptophanyl-tRNA synthetase 1 (WARS1) are known to cause distal hereditary motor neuropathy and Charcot-Marie-Tooth disease, but a recessively inherited phenotype is yet to be clearly defined. Seryl-tRNA synthetase 1 (SARS1) has rarely been implicated in an autosomal recessive developmental disorder. Here, we report five individuals with biallelic missense variants in WARS1 or SARS1, who presented with an overlapping phenotype of microcephaly, developmental delay, intellectual disability, and brain anomalies. Structural mapping showed that the SARS1 variant is located directly within the enzyme's active site, most likely diminishing activity, while the WARS1 variant is located in the N-terminal domain. We further characterize the identified WARS1 variant by showing that it negatively impacts protein abundance and is unable to rescue the phenotype of a CRISPR/Cas9 wars1 knockout zebrafish model. In summary, we describe two overlapping autosomal recessive syndromes caused by variants in WARS1 and SARS1, present functional insights into the pathogenesis of the WARS1-related syndrome and define an emerging disease spectrum: ARS-related developmental disorders with or without microcephaly.
Assuntos
Aminoacil-tRNA Sintetases , Doença de Charcot-Marie-Tooth , Microcefalia , Triptofano-tRNA Ligase , Animais , Humanos , Aminoacil-tRNA Sintetases/genética , Doença de Charcot-Marie-Tooth/genética , Ligases , Microcefalia/genética , Microcefalia/patologia , RNA de Transferência , Triptofano-tRNA Ligase/genética , Peixe-Zebra/genéticaRESUMO
Aminoacyl-tRNA synthetases (aaRS) are ubiquitously expressed enzymes responsible for ligating amino acids to their cognate tRNA molecules through an aminoacylation reaction. The resulting aminoacyl-tRNA is delivered to ribosome elongation factors to participate in protein synthesis. Seryl-tRNA synthetase (SARS1) is one of the cytosolic aaRSs and catalyzes serine attachment to tRNASer . SARS1 deficiency has already been associated with moderate intellectual disability, ataxia, muscle weakness, and seizure in one family. We describe here a new clinical presentation including developmental delay, central deafness, cardiomyopathy, and metabolic decompensation during fever leading to death, in a consanguineous Turkish family, with biallelic variants (c.638G>T, p.(Arg213Leu)) in SARS1. This missense variant was shown to lead to protein instability, resulting in reduced protein level and enzymatic activity. Our results describe a new clinical entity and expand the clinical and mutational spectrum of SARS1 and aaRS deficiencies.
Assuntos
Aminoacil-tRNA Sintetases , Cardiomiopatias , Surdez , Aminoacil-tRNA Sintetases/genética , Aminoacilação , Cardiomiopatias/genética , Criança , Surdez/genética , Humanos , Perda de HeterozigosidadeRESUMO
PURPOSE: Recent reports of individuals with cytoplasmic transfer RNA (tRNA) synthetase-related disorders have identified cases with phenotypic variability from the index presentations. We sought to assess phenotypic variability in individuals with AARS1-related disease. METHODS: A cross-sectional survey was performed on individuals with biallelic variants in AARS1. Clinical data, neuroimaging, and genetic testing results were reviewed. Alanyl tRNA synthetase (AlaRS) activity was measured in available fibroblasts. RESULTS: We identified 11 affected individuals. Two phenotypic presentations emerged, one with early infantile-onset disease resembling the index cases of AARS1-related epileptic encephalopathy with deficient myelination (n = 7). The second (n = 4) was a later-onset disorder, where disease onset occurred after the first year of life and was characterized on neuroimaging by a progressive posterior predominant leukoencephalopathy evolving to include the frontal white matter. AlaRS activity was significantly reduced in five affected individuals with both early infantile-onset and late-onset phenotypes. CONCLUSION: We suggest that variants in AARS1 result in a broader clinical spectrum than previously appreciated. The predominant form results in early infantile-onset disease with epileptic encephalopathy and deficient myelination. However, a subgroup of affected individuals manifests with late-onset disease and similarly rapid progressive clinical decline. Longitudinal imaging and clinical follow-up will be valuable in understanding factors affecting disease progression and outcome.
Assuntos
Leucoencefalopatias , Estudos Transversais , Progressão da Doença , Humanos , Leucoencefalopatias/diagnóstico por imagem , Leucoencefalopatias/genética , FenótipoRESUMO
PURPOSE: Recessive cytosolic aminoacyl-tRNA synthetase (ARS) deficiencies are severe multiorgan diseases, with limited treatment options. By loading transfer RNAs (tRNAs) with their cognate amino acids, ARS are essential for protein translation. However, it remains unknown why ARS deficiencies lead to specific symptoms, especially early life and during infections. We set out to increase pathophysiological insight and improve therapeutic possibilities. METHODS: In fibroblasts from patients with isoleucyl-RS (IARS), leucyl-RS (LARS), phenylalanyl-RS-beta-subunit (FARSB), and seryl-RS (SARS) deficiencies, we investigated aminoacylation activity, thermostability, and sensitivity to ARS-specific amino acid concentrations, and developed personalized treatments. RESULTS: Aminoacylation activity was reduced in all patients, and further diminished at 38.5/40 °C (PLARS and PFARSB), consistent with infectious deteriorations. With lower cognate amino acid concentrations, patient fibroblast growth was severely affected. To prevent local and/or temporal deficiencies, we treated patients with corresponding amino acids (follow-up: 1/2-2 2/3rd years), and intensified treatment during infections. All patients showed beneficial treatment effects, most strikingly in growth (without tube feeding), head circumference, development, coping with infections, and oxygen dependency. CONCLUSION: For these four ARS deficiencies, we observed a common disease mechanism of episodic insufficient aminoacylation to meet translational demands and illustrate the power of amino acid supplementation for the expanding ARS patient group. Moreover, we provide a strategy for personalized preclinical functional evaluation.
Assuntos
Aminoacil-tRNA Sintetases , Aminoácidos , Aminoacil-tRNA Sintetases/genética , Aminoacilação , Humanos , RNA de Transferência/metabolismoRESUMO
Trichothiodystrophy (TTD) is a rare hereditary neurodevelopmental disorder defined by sulfur-deficient brittle hair and nails and scaly skin, but with otherwise remarkably variable clinical features. The photosensitive TTD (PS-TTD) forms exhibits in addition to progressive neuropathy and other features of segmental accelerated aging and is associated with impaired genome maintenance and transcription. New factors involved in various steps of gene expression have been identified for the different non-photosensitive forms of TTD (NPS-TTD), which do not appear to show features of premature aging. Here, we identify alanyl-tRNA synthetase 1 and methionyl-tRNA synthetase 1 variants as new gene defects that cause NPS-TTD. These variants result in the instability of the respective gene products alanyl- and methionyl-tRNA synthetase. These findings extend our previous observations that TTD mutations affect the stability of the corresponding proteins and emphasize this phenomenon as a common feature of TTD. Functional studies in skin fibroblasts from affected individuals demonstrate that these new variants also impact on the rate of tRNA charging, which is the first step in protein translation. The extension of reduced abundance of TTD factors to translation as well as transcription redefines TTD as a syndrome in which proteins involved in gene expression are unstable.
Assuntos
Alanina-tRNA Ligase/genética , Metionina tRNA Ligase/genética , Síndromes de Tricotiodistrofia/genética , Alanina-tRNA Ligase/metabolismo , Criança , Estabilidade Enzimática/genética , Feminino , Humanos , Metionina tRNA Ligase/metabolismo , Síndromes de Tricotiodistrofia/enzimologia , Síndromes de Tricotiodistrofia/patologia , Sequenciamento Completo do GenomaRESUMO
Aminoacyl-tRNA synthetases (ARSs) catalyze the first step of protein biosynthesis (canonical function) and have additional (non-canonical) functions outside of translation. Bi-allelic pathogenic variants in genes encoding ARSs are associated with various recessive mitochondrial and multisystem disorders. We describe here a multisystem clinical phenotype based on bi-allelic mutations in the two genes (FARSA, FARSB) encoding distinct subunits for tetrameric cytosolic phenylalanyl-tRNA synthetase (FARS1). Interstitial lung disease with cholesterol pneumonitis on histology emerged as an early characteristic feature and significantly determined disease burden. Additional clinical characteristics of the patients included neurological findings, liver dysfunction, and connective tissue, muscular and vascular abnormalities. Structural modeling of newly identified missense mutations in the alpha subunit of FARS1, FARSA, showed exclusive mapping to the enzyme's conserved catalytic domain. Patient-derived mutant cells displayed compromised aminoacylation activity in two cases, while remaining unaffected in another. Collectively, these findings expand current knowledge about the human ARS disease spectrum and support a loss of canonical and non-canonical function in FARS1-associated recessive disease.
Assuntos
Doença de Charcot-Marie-Tooth/genética , Doenças Pulmonares Intersticiais/genética , Pulmão/patologia , Mutação/genética , Fenilalanina-tRNA Ligase/genética , Adolescente , Alelos , Criança , Pré-Escolar , Feminino , Genes Recessivos/genética , Humanos , Lactente , Recém-Nascido , Masculino , Linhagem , FenótipoAssuntos
Doenças do Prematuro/genética , Leucina-tRNA Ligase/genética , Falência Hepática Aguda/genética , Anormalidades Múltiplas/genética , Asfixia Neonatal/genética , Colestase/etiologia , Evolução Fatal , Retardo do Crescimento Fetal/etiologia , Humanos , Lactente , Recém-Nascido Prematuro , Doenças do Prematuro/fisiopatologia , Recém-Nascido Pequeno para a Idade Gestacional , Intestinos/anormalidades , Falência Hepática Aguda/fisiopatologia , Masculino , SíndromeRESUMO
AARS1 deficiency belongs to the group of disorders affecting aminoacyl-tRNA synthetases. To date, AARS1 deficiency has only been linked to neurologic disorders. We report a 6-year-old girl with microcephaly and developmental delay who presented with repeated episodes of acute liver failure. Whole-exome sequencing revealed compound heterozygosity for two missense variants within the AARS1 gene, p.[Leu298Gln];[Arg751Gly]), whose functional relevance was demonstrated by decreased enzymatic activity in fibroblasts. This is the first report that shows that AARS1 variants may be associated with recurrent acute liver failure.
RESUMO
Asparaginyl-tRNA synthetase1 (NARS1) is a member of the ubiquitously expressed cytoplasmic Class IIa family of tRNA synthetases required for protein translation. Here, we identify biallelic missense and frameshift mutations in NARS1 in seven patients from three unrelated families with microcephaly and neurodevelopmental delay. Patient cells show reduced NARS1 protein, impaired NARS1 activity and impaired global protein synthesis. Cortical brain organoid modeling shows reduced proliferation of radial glial cells (RGCs), leading to smaller organoids characteristic of microcephaly. Single-cell analysis reveals altered constituents of both astrocytic and RGC lineages, suggesting a requirement for NARS1 in RGC proliferation. Our findings demonstrate that NARS1 is required to meet protein synthetic needs and to support RGC proliferation in human brain development.
Assuntos
Aspartato-tRNA Ligase/deficiência , Aspartato-tRNA Ligase/genética , Córtex Cerebral/patologia , Microcefalia/genética , Células-Tronco Neurais/patologia , Organoides/patologia , Aminoacil-RNA de Transferência/genética , Adolescente , Adulto , Sequência de Bases , Diferenciação Celular , Proliferação de Células , Tamanho Celular , Sobrevivência Celular , Criança , Família , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Células HEK293 , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Antígeno Ki-67/metabolismo , Masculino , Mutação/genética , Células-Tronco Neurais/metabolismo , Neuroglia/metabolismo , Linhagem , Adulto JovemRESUMO
BACKGROUND: Pulmonary alveolar proteinosis (PAP) is a heterogeneous condition with more than 100 different underlying disorders that need to be differentiated to target therapeutic options, which are generally limited. METHODS: The clinical course of two brothers with pathogenic variants in the methionyl-tRNA synthetase (MARS)1 gene was compared to previously published patients. Functional studies in patient-derived fibroblasts were performed and therapeutic options evaluated. RESULTS: The younger brother was diagnosed with PAP at the age of 1 year. Exome sequencing revealed the homozygous MARS1 variant p.(Arg598Cys), leading to interstitial lung and liver disease (ILLD). At 2 years of age, following surgery hypoglycemia was detected, the pulmonary condition deteriorated, and the patient developed multiorgan failure. Six therapeutic whole lung lavages (WLL) were necessary to improve respiratory insufficiency. Methionine supplementation was started and a high protein diet ensured, leading to complete respiratory recovery. The older brother, homozygous for the same MARS1 variant, had a long-known distinct eating preference of methionine-rich food and showed a less severe clinical phenotype. Decreased aminoacylation activity confirmed the pathogenicity of p.(Arg598Cys) in vitro. In agreement with our review of currently published ILLD patients, the presence of hepatopathy, developmental delay, muscular hypotonia, and anemia support the multisystemic character of the disease. CONCLUSIONS: Catabolic events can provoke a severe deterioration of the pulmonary situation in ILLD with a need for repetitive WLL. Although the precise role of oral methionine supplementation and high protein intake are unknown, we observed an apparent treatment benefit, which needs to be evaluated systematically in controlled trials.
Assuntos
Lavagem Broncoalveolar , Proteínas Alimentares/administração & dosagem , Metionina tRNA Ligase/genética , Metionina/administração & dosagem , Proteinose Alveolar Pulmonar/terapia , Insuficiência Respiratória/terapia , Criança , Pré-Escolar , Humanos , Hepatopatias/genética , Hepatopatias/terapia , Doenças Pulmonares Intersticiais/genética , Doenças Pulmonares Intersticiais/terapia , Masculino , Proteinose Alveolar Pulmonar/genética , Insuficiência Respiratória/genéticaRESUMO
PURPOSE: Biallelic variants in LARS1, coding for the cytosolic leucyl-tRNA synthetase, cause infantile liver failure syndrome 1 (ILFS1). Since its description in 2012, there has been no systematic analysis of the clinical spectrum and genetic findings. METHODS: Individuals with biallelic variants in LARS1 were included through an international, multicenter collaboration including novel and previously published patients. Clinical variables were analyzed and functional studies were performed in patient-derived fibroblasts. RESULTS: Twenty-five individuals from 15 families were ascertained including 12 novel patients with eight previously unreported variants. The most prominent clinical findings are recurrent elevation of liver transaminases up to liver failure and encephalopathic episodes, both triggered by febrile illness. Magnetic resonance image (MRI) changes during an encephalopathic episode can be consistent with metabolic stroke. Furthermore, growth retardation, microcytic anemia, neurodevelopmental delay, muscular hypotonia, and infection-related seizures are prevalent. Aminoacylation activity is significantly decreased in all patient cells studied upon temperature elevation in vitro. CONCLUSION: ILFS1 is characterized by recurrent elevation of liver transaminases up to liver failure in conjunction with abnormalities of growth, blood, nervous system, and musculature. Encephalopathic episodes with seizures can occur independently from liver crises and may present with metabolic stroke.
Assuntos
Falência Hepática , Humanos , Hipotonia Muscular , Mutação , ConvulsõesRESUMO
Deficiency of succinate semialdehyde dehydrogenase (SSADH; aldehyde dehydrogenase 5a1 (ALDH5A1), OMIM 271980, 610045), the second enzyme of GABA degradation, represents a rare autosomal-recessively inherited disorder which manifests metabolically as gamma-hydroxybutyric aciduria. The neurological phenotype includes intellectual disability, autism spectrum, epilepsy and sleep and behavior disturbances. Approximately 70 variants have been reported in the ALDH5A1 gene, half of them being missense variants. In this study, 34 missense variants, of which 22 novel, were evaluated by in silico analyses using PolyPhen2 and SIFT prediction tools. Subsequently, the effect of these variants on SSADH activity was studied by transient overexpression in HEK293 cells. These studies showed severe enzymatic activity impairment for 27 out of 34 alleles, normal activity for one allele and a broad range of residual activities (25 to 74%) for six alleles. To better evaluate the alleles that showed residual activity above 25%, we generated an SSADH-deficient HEK293-Flp-In cell line using CRISPR-Cas9, in which these alleles were stably expressed. This model proved essential in the classification as deficient for one out of the seven studied alleles. For 8 out of 34 addressed alleles, there were discrepant results among the used prediction tools, and/or in correlating the results of the prediction tools with the functional data. In case of diagnostic urgency of missense alleles, we propose the use of the transient transfection model for confirmation of their effect on the SSADH catalytic function, since this model resulted in fast and robust functional characterization for the majority of the tested variants. In selected cases, stable transfections can be considered and may prove valuable.
Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/patologia , Deficiências do Desenvolvimento/patologia , Mutação de Sentido Incorreto , Succinato-Semialdeído Desidrogenase/deficiência , Erros Inatos do Metabolismo dos Aminoácidos/genética , Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Simulação por Computador , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/metabolismo , Células HEK293 , Humanos , Succinato-Semialdeído Desidrogenase/genética , Succinato-Semialdeído Desidrogenase/metabolismoRESUMO
BACKGROUND: Methotrexate (MTX) is an important anti-folate agent in pediatric acute lymphoblastic leukemia (ALL) treatment. Folinic acid rescue therapy (Leucovorin) is administered after MTX to reduce toxicity. Previous studies hypothesized that Leucovorin could 'rescue' both normal healthy cells and leukemic blasts from cell death. We assessed whether Leucovorin is able to restore red blood cell folate levels after MTX. METHODS: We prospectively determined erythrocyte folate levels (5-methyltetrahydrofolate (THF) and non-methyl THF) and serum folate levels in 67 children with ALL before start (T0) and after stop (T1) of HD-MTX and Leucovorin courses. RESULTS: Erythrocyte folate levels increased between T0 and T1 (mean ± SD: 416.7 ± 145.5 nmol/L and 641.2 ± 196.3 nmol/L respectively, p<0.001). This was due to an increase in 5-methyl THF levels (mean increase: 217.7 ± 209.5 nmol/L, p<0.001), whereas non-methyl THF levels did not change (median increase: 0.6 nmol/L [-9.9-11.1], p = 0.676). Serum folate levels increased between T0 and T1 (median increase: 29.2 nmol/L [32.9-74.0], p<0.001). Results were not significantly affected by age, sex, ALL immunophenotype and MTHFR c.677C>T genotype. CONCLUSION: Intracellular folate levels accumulate after HD-MTX and Leucovorin therapy in children with ALL, suggesting that Leucovorin restores the intracellular folate pool. Future studies are necessary to assess concomitant lower uptake of MTX.
Assuntos
Ácido Fólico/sangue , Leucovorina/administração & dosagem , Metotrexato/administração & dosagem , Leucemia-Linfoma Linfoblástico de Células Precursoras/sangue , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Adolescente , Antídotos/administração & dosagem , Criança , Pré-Escolar , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Feminino , Antagonistas do Ácido Fólico/administração & dosagem , Antagonistas do Ácido Fólico/efeitos adversos , Homocisteína/sangue , Humanos , Lactente , Masculino , Redes e Vias Metabólicas , Metotrexato/efeitos adversos , Estudos Prospectivos , Vitamina B 12/sangueRESUMO
Brittle and "tiger-tail" hair is the diagnostic hallmark of trichothiodystrophy (TTD), a rare recessive disease associated with a wide spectrum of clinical features including ichthyosis, intellectual disability, decreased fertility, and short stature. As a result of premature abrogation of terminal differentiation, the hair is brittle and fragile and contains reduced cysteine content. Hypersensitivity to UV light is found in about half of individuals with TTD; all of these individuals harbor bi-allelic mutations in components of the basal transcription factor TFIIH, and these mutations lead to impaired nucleotide excision repair and basal transcription. Different genes have been found to be associated with non-photosensitive TTD (NPS-TTD); these include MPLKIP (also called TTDN1), GTF2E2 (also called TFIIEß), and RNF113A. However, a relatively large group of these individuals with NPS-TTD have remained genetically uncharacterized. Here we present the identification of an NPS-TTD-associated gene, threonyl-tRNA synthetase (TARS), found by next-generation sequencing of a group of uncharacterized individuals with NPS-TTD. One individual has compound heterozygous TARS variants, c.826A>G (p.Lys276Glu) and c.1912C>T (p.Arg638∗), whereas a second individual is homozygous for the TARS variant: c.680T>C (p.Leu227Pro). We showed that these variants have a profound effect on TARS protein stability and enzymatic function. Our results expand the spectrum of genes involved in TTD to include genes implicated in amino acid charging of tRNA, which is required for the last step in gene expression, namely protein translation. We previously proposed that some of the TTD-specific features derive from subtle transcription defects as a consequence of unstable transcription factors. We now extend the definition of TTD from a transcription syndrome to a "gene-expression" syndrome.
Assuntos
Doenças do Cabelo/patologia , Mutação , Treonina-tRNA Ligase/genética , Síndromes de Tricotiodistrofia/patologia , Alelos , Sequência de Aminoácidos , Estudos de Casos e Controles , Doenças do Cabelo/genética , Humanos , Fenótipo , Homologia de Sequência , Fator de Transcrição TFIIH/genética , Síndromes de Tricotiodistrofia/genéticaRESUMO
Aminoacyl-tRNA synthetases (ARSs) are essential enzymes responsible for charging tRNA molecules with cognate amino acids. Consistent with the essential function and ubiquitous expression of ARSs, mutations in 32 of the 37 ARS-encoding loci cause severe, early-onset recessive phenotypes. Previous genetic and functional data suggest a loss-of-function mechanism; however, our understanding of the allelic and locus heterogeneity of ARS-related disease is incomplete. Cysteinyl-tRNA synthetase (CARS) encodes the enzyme that charges tRNACys with cysteine in the cytoplasm. To date, CARS variants have not been implicated in any human disease phenotype. Here, we report on four subjects from three families with complex syndromes that include microcephaly, developmental delay, and brittle hair and nails. Each affected person carries bi-allelic CARS variants: one individual is compound heterozygous for c.1138C>T (p.Gln380∗) and c.1022G>A (p.Arg341His), two related individuals are compound heterozygous for c.1076C>T (p.Ser359Leu) and c.1199T>A (p.Leu400Gln), and one individual is homozygous for c.2061dup (p.Ser688Glnfs∗2). Measurement of protein abundance, yeast complementation assays, and assessments of tRNA charging indicate that each CARS variant causes a loss-of-function effect. Compared to subjects with previously reported ARS-related diseases, individuals with bi-allelic CARS variants are unique in presenting with a brittle-hair-and-nail phenotype, which most likely reflects the high cysteine content in human keratins. In sum, our efforts implicate CARS variants in human inherited disease, expand the locus and clinical heterogeneity of ARS-related clinical phenotypes, and further support impaired tRNA charging as the primary mechanism of recessive ARS-related disease.