Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Int J Neonatal Screen ; 10(2)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38920848

RESUMO

Duchenne muscular dystrophy (DMD) is an X-linked progressive disorder and the most common type of muscular dystrophy in children. As newborn screening (NBS) for DMD undergoes evaluation for the Recommended Uniform Screening Panel and is already mandated in multiple states, refining NBS algorithms is of utmost importance. NBS for DMD involves measuring creatine kinase-MM (CK-MM) concentration-a biomarker of muscle damage-in dried blood spots. The current test is FDA-approved for samples obtained less than 72 h after birth. Separate reference ranges are needed for samples collected later than 72 h after birth. In this study, we investigated the relationship between age and CK-MM in presumed healthy newborns to inform NBS algorithm designs. In patients with DMD, CK-MM is persistently elevated in childhood and adolescence, while it may be transiently elevated for other reasons in healthy newborns. CK-MM decrease over time was demonstrated by a population sample of 20,306 presumed healthy newborns tested between 0 and 60 days of life and repeat testing of 53 newborns on two separate days. In the population sample, CK-MM concentration was highest in the second 12 h period of life (median = 318 ng/mL) when only 57.6% of newborns tested below 360 ng/mL, the lowest previously published cutoff. By 72 h of age, median CK-MM concentration was 97 ng/mL, and 96.0% of infants had concentrations below 360 ng/mL. Between 72 h and 60 days, median CK-MM concentration ranged from 32 to 37 ng/mL. Establishing age-related cutoffs is crucial for optimizing the sensitivity and specificity of NBS for DMD.

2.
Am J Med Genet A ; : e63798, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38924341

RESUMO

Although next-generation sequencing has enabled diagnoses for many patients with Mendelian disorders, the majority remain undiagnosed. Here, we present a sibling pair who were clinically diagnosed with Escobar syndrome, however targeted gene testing was negative. Exome sequencing (ES), and later genome sequencing (GS), revealed compound heterozygous TTN variants in both siblings, a maternally inherited frameshift variant [(NM_133378.4):c.36812del; p.(Asp12271Valfs*10)], and a paternally inherited missense variant [(NM_133378.4):c.12322G > A; p.(Asp4108Asn)]. This result was considered nondiagnostic due to poor clinical fit and limited pathogenicity evidence for the missense variant of uncertain significance (VUS). Following initial nondiagnostic RNA sequencing (RNAseq) on muscle and further pursuit of other variants detected on the ES/GS, a reanalysis of noncanonical splice sites in the muscle transcriptome identified an out-of-frame exon retraction in TTN, near the known VUS. Interim literature included reports of patients with similar TTN variants who had phenotypic concordance with the siblings, and a diagnosis of a congenital titinopathy was given 4 years after the TTN variants had been initially reported. This report highlights the value of reanalysis of RNAseq with a different approach, expands the phenotypic spectrum of congenital titinopathy and also illustrates how a perceived phenotypic mismatch, and failure to consider known variants, can result in a prolongation of the diagnostic journey.

3.
HGG Adv ; 5(3): 100288, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38566418

RESUMO

Biallelic loss-of-function variants in the MUSK gene result in two allelic disorders: (1) congenital myasthenic syndrome (CMS; OMIM: 616325), a neuromuscular disorder that has a range of severity from severe neonatal-onset weakness to mild adult-onset weakness, and (2) fetal akinesia deformation sequence (OMIM: 208150), a form of pregnancy loss characterized by severe muscle weakness in the fetus. The MUSK gene codes for muscle-specific kinase (MuSK), a receptor tyrosine kinase involved in the development of the neuromuscular junction. Here, we report a case of neonatal-onset MUSK-related CMS in a patient harboring compound heterozygous deletions in the MUSK gene, including (1) a deletion of exons 2-3 leading to an in-frame MuSK protein lacking the immunoglobulin 1 (Ig1) domain and (2) a deletion of exons 7-11 leading to an out-of-frame, truncated MuSK protein. Individual domains of the MuSK protein have been elucidated structurally; however, a complete MuSK structure generated by machine learning algorithms has clear inaccuracies. We modify a predicted AlphaFold structure and integrate previously reported domain-specific structural data to suggest a MuSK protein that dimerizes in two locations (Ig1 and the transmembrane domain). We analyze known pathogenic variants in MUSK to discover domain-specific genotype-phenotype correlations; variants that lead to a loss of protein expression, disruption of the Ig1 domain, or Dok-7 binding are associated with the most severe phenotypes. A conceptual model is provided to explain the severe phenotypes seen in Ig1 variants and the poor response of our patient to pyridostigmine.

4.
Neurology ; 102(5): e208112, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38335499

RESUMO

BACKGROUND AND OBJECTIVES: Vamorolone is a dissociative agonist of the glucocorticoid receptor that has shown similar efficacy and reduced safety concerns in comparison with prednisone in Duchenne muscular dystrophy (DMD). This study was conducted to determine the efficacy and safety of vamorolone over 48 weeks and to study crossover participants (prednisone to vamorolone; placebo to vamorolone). METHODS: A randomized, double-blind, placebo-controlled and prednisone-controlled clinical trial of 2 doses of vamorolone was conducted in participants with DMD, in the ages from 4 years to younger than 7 years at baseline. The interventions were 2 mg/kg/d of vamorolone and 6 mg/kg/d of vamorolone for 48 weeks (period 1: 24 weeks + period 2: 24 weeks) and 0.75 mg/kg/d of prednisone and placebo for the first 24 weeks (before crossover). Efficacy was evaluated through gross motor outcomes and safety through adverse events, growth velocity, body mass index (BMI), and bone turnover biomarkers. This analysis focused on period 2. RESULTS: A total of 121 participants with DMD were randomized. Vamorolone at a dose of 6 mg/kg/d showed maintenance of improvement for all motor outcomes to week 48 (e.g., for primary outcome, time to stand from supine [TTSTAND] velocity, week 24 least squares mean [LSM] [SE] 0.052 [0.0130] rises/s vs week 48 LSM [SE] 0.0446 [0.0138]). After 48 weeks, vamorolone at a dose of 2 mg/kg/d showed similar improvements as 6 mg/kg/d for North Star Ambulatory Assessment (NSAA) (vamorolone 6 mg/kg/d-vamorolone 2 mg/kg/d LSM [SE] 0.49 [1.14]; 95% CI -1.80 to 2.78, p = 0.67), but less improvement for other motor outcomes. The placebo to vamorolone 6 mg/kg/d group showed rapid improvements after 20 weeks of treatment approaching benefit seen with 48-week 6 mg/kg/d of vamorolone treatment for TTSTAND, time to run/walk 10 m, and NSAA. There was significant improvement in linear growth after crossover in the prednisone to vamorolone 6 mg/kg/d group, and rapid reversal of prednisone-induced decline in bone turnover biomarkers in both crossover groups. There was an increase in BMI after 24 weeks of treatment that then stabilized for both vamorolone groups. DISCUSSION: Improvements of motor outcomes seen with 6 mg/kg/d of vamorolone at 24 weeks of treatment were maintained to 48 weeks of treatment. Vamorolone at a dose of 6 mg/kg/d showed better maintenance of effect compared with vamorolone at a dose of 2 mg/kg/d for most (3/5) motor outcomes. Bone morbidities of prednisone (stunting of growth and declines in serum bone biomarkers) were reversed when treatment transitioned to vamorolone. TRIAL REGISTRATION INFORMATION: ClinicalTrials.gov Identifier: NCT03439670. CLASSIFICATION OF EVIDENCE: This study provides Class I evidence that for boys with DMD, the efficacy of vamorolone at a dose of 6 mg/kg/d was maintained over 48 weeks.


Assuntos
Distrofia Muscular de Duchenne , Pregnadienodiois , Humanos , Masculino , Biomarcadores , Distrofia Muscular de Duchenne/tratamento farmacológico , Prednisona/efeitos adversos , Pregnadienodiois/efeitos adversos , Pré-Escolar , Criança
5.
J Neuromuscul Dis ; 11(1): 201-212, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37980682

RESUMO

BACKGROUND: Becker muscular dystrophy is an X-linked, genetic disorder causing progressive degeneration of skeletal and cardiac muscle, with a widely variable phenotype. OBJECTIVE: A 3-year, longitudinal, prospective dataset contributed by patients with confirmed Becker muscular dystrophy was analyzed to characterize the natural history of this disorder. A better understanding of the natural history is crucial to rigorous therapeutic trials. METHODS: A cohort of 83 patients with Becker muscular dystrophy (5-75 years at baseline) were followed for up to 3 years with annual assessments. Muscle and pulmonary function outcomes were analyzed herein. Age-stratified statistical analysis and modeling were conducted to analyze cross-sectional data, time-to-event data, and longitudinal data to characterize these clinical outcomes. RESULTS: Deletion mutations of dystrophin exons 45-47 or 45-48 were most common. Subgroup analysis showed greater pairwise association between motor outcomes at baseline than association between these outcomes and age. Stronger correlations between outcomes for adults than for those under 18 years were also observed. Using cross-sectional binning analysis, a ceiling effect was seen for North Star Ambulatory Assessment but not for other functional outcomes. Longitudinal analysis showed a decline in percentage predicted forced vital capacity over the life span. There was relative stability or improved median function for motor functional outcomes through childhood and adolescence and decreasing function with age thereafter. CONCLUSIONS: There is variable progression of outcomes resulting in significant heterogeneity of the clinical phenotype of Becker muscular dystrophy. Disease progression is largely manifest in adulthood. There are implications for clinical trial design revealed by this longitudinal analysis of a Becker natural history dataset.


Assuntos
Distrofia Muscular de Duchenne , Adulto , Adolescente , Humanos , Criança , Distrofia Muscular de Duchenne/genética , Estudos Prospectivos , Estudos Transversais , Fenótipo , Miocárdio
6.
Genet Med ; 26(1): 101009, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37864479

RESUMO

PURPOSE: Current and emerging treatments for Duchenne muscular dystrophy (DMD) position DMD as a candidate condition for newborn screening (NBS). In anticipation of the nomination of DMD for universal NBS, we conducted a prospective study under the Early Check voluntary NBS research program in North Carolina, United States. METHODS: We performed screening for creatine kinase-MM (CK-MM), a biomarker of muscle damage, on residual routine newborn dried blood spots (DBS) from participating newborns. Total creatine kinase testing and next generation sequencing of an 86-neuromuscular gene panel that included DMD were offered to parents of newborns who screened positive. Bivariate and multivariable analyses were performed to assess effects of biological and demographic predictors on CK-MM levels in DBS. RESULTS: We screened 13,354 newborns and identified 2 males with DMD. The provisional 1626 ng/mL cutoff was raised to 2032 ng/mL to improve specificity, and additional cutoffs (900 and 360 ng/mL) were implemented to improve sensitivity for older and low-birthweight newborns. CONCLUSION: Population-scale screening for elevated CK-MM in DBS is a feasible approach to identify newborns with DMD. Inclusion of birthweight- and age-specific cutoffs, repeat creatine kinase testing after 72 hours of age, and DMD sequencing improve sensitivity and specificity of screening.


Assuntos
Distrofia Muscular de Duchenne , Masculino , Humanos , Recém-Nascido , Distrofia Muscular de Duchenne/diagnóstico , Distrofia Muscular de Duchenne/epidemiologia , Distrofia Muscular de Duchenne/genética , Triagem Neonatal , Peso ao Nascer , North Carolina/epidemiologia , Estudos Prospectivos , Creatina Quinase
7.
Orphanet J Rare Dis ; 18(1): 269, 2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37667351

RESUMO

BACKGROUND: A recurrent de novo variant (c.892C>T) in NACC1 causes a neurodevelopmental disorder with epilepsy, cataracts, feeding difficulties, and delayed brain myelination (NECFM). An unusual and consistently reported feature is episodic extreme irritability and inconsolability. We now characterize these episodes, their impact on the family, and ascertain treatments that may be effective. Parents of 14 affected individuals provided narratives describing the irritability episodes, including triggers, behavioral and physiological changes, and treatments. Simultaneously, parents of 15 children completed the Non-communicating Children's Pain Checklist-Revised (NCCPC-R), a measure to assess pain in non-verbal children. RESULTS: The episodes of extreme irritability include a prodromal, peak, and resolving phase, with normal periods in between. The children were rated to have extreme pain-related behaviors on the NCCPC-R scale, although it is unknown whether the physiologic changes described by parents are caused by pain. Attempted treatments included various classes of medications, with psychotropic and sedative medications being most effective (7/15). Nearly all families (13/14) describe how the episodes have a profound impact on their lives. CONCLUSIONS: NECFM caused by the recurrent variant c.892C>T is associated with a universal feature of incapacitating episodic irritability of unclear etiology. Further understanding of the pathophysiology can lead to more effective therapeutic strategies.


Assuntos
Encéfalo , Catarata , Criança , Humanos , Hipnóticos e Sedativos , Dor/genética , Pais , Doenças Raras , Proteínas de Neoplasias , Proteínas Repressoras
8.
JIMD Rep ; 64(5): 393-400, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37701327

RESUMO

Late-onset Pompe disease (LOPD) is a multisystem disorder with significant myopathy. The standard treatment is enzyme replacement therapy (ERT), a therapy that is lifesaving, yet with limitations. Clinical trials have emerged for other potential treatment options, including adeno-associated virus (AAV) gene therapy. We present clinical parameters and AAV antibody titers for 19 individuals with LOPD undergoing screening for a Phase I clinical trial with an AAV serotype 8 vector targeting hepatic transduction (AAV2/8-LSPhGAA). Reported clinical parameters included GAA genotype, assessments of muscle function, upright and supine spirometry, anti-recombinant human GAA antibody titers, and biomarkers. Variability in measured parameters and phenotypes of screened individuals was evident. Eligibility criteria required that all participants have six-minute walk test (6MWT) and upright forced vital capacity (FVC) below the expected range for normal individuals, and were stably treated with ERT for >2 years. All participants had Pompe disease diagnosed by enzyme deficiency, and all had the common c.-32-13T>G LOPD pathogenic variant. Screening identified 14 patients (74%) with no or minimal detectable neutralizing antibodies against AAV8 (titer ≤1:5). 6MWT distance varied significantly (percent of expected distance ranging from 24% to 91% with an average of 60 and standard deviation of 21). Upright FVC percent predicted ranged from 35% predicted to 91% predicted with an average of 66 and standard deviation of 18. None of the participants had significantly elevated alanine transaminase, which has been associated with LOPD and could complicate screening for hepatitis related to AAV gene therapy. We review the parameters considered in screening for eligibility for a clinical trial of AAV8 vector-mediated gene therapy.

9.
Genet Med ; 25(9): 100897, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37191094

RESUMO

PURPOSE: Mendelian etiologies for acute encephalopathies in previously healthy children are poorly understood, with the exception of RAN binding protein 2 (RANBP2)-associated acute necrotizing encephalopathy subtype 1 (ANE1). We provide clinical, genetic, and neuroradiological evidence that biallelic variants in ribonuclease inhibitor (RNH1) confer susceptibility to a distinctive ANE subtype. METHODS: This study aimed to evaluate clinical data, neuroradiological studies, genomic sequencing, and protein immunoblotting results in 8 children from 4 families who experienced acute febrile encephalopathy. RESULTS: All 8 healthy children became acutely encephalopathic during a viral/febrile illness and received a variety of immune modulation treatments. Long-term outcomes varied from death to severe neurologic deficits to normal outcomes. The neuroradiological findings overlapped with ANE but had distinguishing features. All affected children had biallelic predicted damaging variants in RNH1: a subset that was studied had undetectable RNH1 protein. Incomplete penetrance of the RNH1 variants was evident in 1 family. CONCLUSION: Biallelic variants in RNH1 confer susceptibility to a subtype of ANE (ANE2) in previously healthy children. Intensive immunological treatments may alter outcomes. Genomic sequencing in children with unexplained acute febrile encephalopathy can detect underlying genetic etiologies, such as RNH1, and improve outcomes in the probands and at-risk siblings.


Assuntos
Encefalopatia Aguda Febril , Encefalopatias , Leucoencefalite Hemorrágica Aguda , Criança , Humanos , Leucoencefalite Hemorrágica Aguda/diagnóstico , Leucoencefalite Hemorrágica Aguda/genética , Inflamassomos , Encefalopatias/genética , Fatores de Transcrição , Ribonucleases , Proteínas de Transporte
10.
J Neuromuscul Dis ; 10(3): 439-447, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37005891

RESUMO

BACKGROUND: Duchenne muscular dystrophy (DMD) is caused by DMD gene mutations, resulting in absence of functional dystrophin protein. Viltolarsen, an exon 53 skipping therapy, significantly increased dystrophin levels in patients with DMD. Presented here are completed study results of > 4 years of functional outcomes in viltolarsen-treated patients compared to a historical control group (Cooperative International Neuromuscular Research Group Duchenne Natural History Study [CINRG DNHS]). OBJECTIVE: To evaluate the efficacy and safety of viltolarsen for an additional 192 weeks in boys with DMD. METHODS: This phase 2, open-label, 192-week long-term extension (LTE) study (NCT03167255) evaluated the efficacy and safety of viltolarsen in participants aged 4 to < 10 years at baseline with DMD amenable to exon 53 skipping. All 16 participants from the initial 24-week study enrolled into this LTE. Timed function tests were compared to the CINRG DNHS group. All participants received glucocorticoid treatment. The primary efficacy outcome was time to stand from supine (TTSTAND). Secondary efficacy outcomes included additional timed function tests. Safety was continuously assessed. RESULTS: For the primary efficacy outcome (TTSTAND), viltolarsen-treated patients showed stabilization of motor function over the first two years and significant slowing of disease progression over the following two years compared with the CINRG DNHS control group which declined. Viltolarsen was well tolerated, with most reported treatment-emergent adverse events being mild or moderate. No participants discontinued drug during the study. CONCLUSIONS: Based on the results of this 4-year LTE, viltolarsen can be an important treatment strategy for DMD patients amenable to exon 53 skipping.


Assuntos
Distrofia Muscular de Duchenne , Masculino , Humanos , Distrofia Muscular de Duchenne/genética , Distrofina/genética , Oligonucleotídeos/efeitos adversos , Glucocorticoides/uso terapêutico
11.
Mol Ther ; 31(7): 1994-2004, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-36805083

RESUMO

Gene therapy with an adeno-associated virus serotype 8 (AAV8) vector (AAV8-LSPhGAA) could eliminate the need for enzyme replacement therapy (ERT) by creating a liver depot for acid α-glucosidase (GAA) production. We report initial safety and bioactivity of the first dose (1.6 × 1012 vector genomes/kg) cohort (n = 3) in a 52-week open-label, single-dose, dose-escalation study (NCT03533673) in patients with late-onset Pompe disease (LOPD). Subjects discontinued biweekly ERT after week 26 based on the detection of elevated serum GAA activity and the absence of clinically significant declines per protocol. Prednisone (60 mg/day) was administered as immunoprophylaxis through week 4, followed by an 11-week taper. All subjects demonstrated sustained serum GAA activities from 101% to 235% of baseline trough activity 2 weeks following the preceding ERT dose. There were no treatment-related serious adverse events. No subject had anti-capsid T cell responses that decreased transgene expression. Muscle biopsy at week 24 revealed unchanged muscle glycogen content in two of three subjects. At week 52, muscle GAA activity for the cohort was significantly increased (p < 0.05). Overall, these initial data support the safety and bioactivity of AAV8-LSPhGAA, the safety of withdrawing ERT, successful immunoprophylaxis, and justify continued clinical development of AAV8-LSPhGAA therapy in Pompe disease.


Assuntos
Doença de Depósito de Glicogênio Tipo II , Humanos , alfa-Glucosidases/genética , alfa-Glucosidases/metabolismo , Anticorpos/genética , Terapia de Reposição de Enzimas/métodos , Terapia Genética/métodos , Doença de Depósito de Glicogênio Tipo II/terapia , Doença de Depósito de Glicogênio Tipo II/tratamento farmacológico , Fígado/metabolismo
12.
Eur J Hum Genet ; 31(6): 712-715, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36690831

RESUMO

Clinical exome/genome sequencing is increasingly being utilized by clinicians to diagnose various likely genetic conditions, but many cases remain undiagnosed. In a subset of those undiagnosed cases, a single heterozygous variant in an autosomal recessive (AR) condition with consistent phenotype may be identified, raising the question if a second variant is missing. Here, we report two cases of recessive conditions in which only one heterozygous variant was initially reported by clinical exome sequencing, and on research reanalysis a second heterozygous variant in trans was identified. We performed a review of the existing exome reanalysis literature and found that this aspect is often not emphasized. These findings highlight the importance of data reanalysis in undiagnosed cases where only a single disease-associated variant is identified in an AR condition with a strong link to presenting phenotype.


Assuntos
Exoma , Fenótipo , Heterozigoto , Sequenciamento do Exoma
13.
JAMA Neurol ; 79(10): 1005-1014, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36036925

RESUMO

Importance: Corticosteroidal anti-inflammatory drugs are widely prescribed but long-term use shows adverse effects that detract from patient quality of life. Objective: To determine if vamorolone, a structurally unique dissociative steroidal anti-inflammatory drug, is able to retain efficacy while reducing safety concerns with use in Duchenne muscular dystrophy (DMD). Design, Setting, and Participants: Randomized, double-blind, placebo- and prednisone-controlled 24-week clinical trial, conducted from June 29, 2018, to February 24, 2021, with 24 weeks of follow-up. This was a multicenter study (33 referral centers in 11 countries) and included boys 4 to younger than 7 years of age with genetically confirmed DMD not previously treated with corticosteroids. Interventions: The study included 4 groups: placebo; prednisone, 0.75 mg/kg per day; vamorolone, 2 mg/kg per day; and vamorolone, 6 mg/kg per day. Main Outcomes and Measures: Study outcomes monitored (1) efficacy, which included motor outcomes (primary: time to stand from supine velocity in the vamorolone, 6 mg/kg per day, group vs placebo; secondary: time to stand from supine velocity [vamorolone, 2 mg/kg per day], 6-minute walk distance, time to run/walk 10 m [vamorolone, 2 and 6 mg/kg per day]; exploratory: NorthStar Ambulatory Assessment, time to climb 4 stairs) and (2) safety, which included growth, bone biomarkers, and a corticotropin (ACTH)-challenge test. Results: Among the 133 boys with DMD enrolled in the study (mean [SD] age, 5.4 [0.9] years), 121 were randomly assigned to treatment groups, and 114 completed the 24-week treatment period. The trial met the primary end point for change from baseline to week 24 time to stand velocity for vamorolone, 6 mg/kg per day (least-squares mean [SE] velocity, 0.05 [0.01] m/s vs placebo -0.01 [0.01] m/s; 95% CI, 0.02-0.10; P = .002) and the first 4 sequential secondary end points: time to stand velocity, vamorolone, 2 mg/kg per day, vs placebo; 6-minute walk test, vamorolone, 6 mg/kg per day, vs placebo; 6-minute walk test, vamorolone, 2 mg/kg per day, vs placebo; and time to run/walk 10 m velocity, vamorolone, 6 mg/kg per day, vs placebo. Height percentile declined in prednisone-treated (not vamorolone-treated) participants (change from baseline [SD]: prednisone, -1.88 [8.81] percentile vs vamorolone, 6 mg/kg per day, +3.86 [6.16] percentile; P = .02). Bone turnover markers declined with prednisone but not with vamorolone. Boys with DMD at baseline showed low ACTH-stimulated cortisol and high incidence of adrenal insufficiency. All 3 treatment groups led to increased adrenal insufficiency. Conclusions and Relevance: In this pivotal randomized clinical trial, vamorolone was shown to be effective and safe in the treatment of boys with DMD over a 24-week treatment period. Vamorolone may be a safer alternative than prednisone in this disease, in which long-term corticosteroid use is the standard of care. Trial Registration: ClinicalTrials.gov Identifier: NCT03439670.


Assuntos
Insuficiência Adrenal , Distrofia Muscular de Duchenne , Corticosteroides , Insuficiência Adrenal/induzido quimicamente , Insuficiência Adrenal/tratamento farmacológico , Hormônio Adrenocorticotrópico/uso terapêutico , Anti-Inflamatórios/efeitos adversos , Biomarcadores , Pré-Escolar , Método Duplo-Cego , Humanos , Hidrocortisona/uso terapêutico , Masculino , Distrofia Muscular de Duchenne/tratamento farmacológico , Prednisona/uso terapêutico , Qualidade de Vida , Resultado do Tratamento
14.
J Neuromuscul Dis ; 9(4): 493-501, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35634851

RESUMO

BACKGROUND: Duchenne muscular dystrophy (DMD) is a rare, genetic disease caused by mutations in the DMD gene resulting in an absence of functional dystrophin protein. Viltolarsen, an exon 53 skipping therapy, has been shown to increase endogenous dystrophin levels. Herein, long-term (>2 years) functional outcomes in viltolarsen treated patients were compared to a matched historical control group. OBJECTIVE: To evaluate long-term efficacy and safety of the anti-sense oligonucleotide viltolarsen in the treatment of patients with DMD amenable to exon 53 skipping therapy. METHODS: This trial (NCT03167255) is the extension of a previously published 24-week trial in North America (NCT02740972) that examined dystrophin levels, timed function tests compared to a matched historical control group (Cooperative International Neuromuscular Research Group Duchenne Natural History Study, CINRG DNHS), and safety in boys 4 to < 10 years (N = 16) with DMD amenable to exon 53 skipping who were treated with viltolarsen. Both groups were treated with glucocorticoids. All 16 participants elected to enroll in this long-term trial (up to 192 weeks) to continue evaluation of motor function and safety. RESULTS: Time to stand from supine and time to run/walk 10 meters showed stabilization from baseline through week 109 for viltolarsen-treated participants whereas the historical control group showed decline (statistically significant differences for multiple timepoints). Safety was similar to that observed in the previous 24-week trial, which was predominantly mild. There have been no treatment-related serious adverse events and no discontinuations. CONCLUSIONS: Based on these results at over 2 years, viltolarsen can be a new treatment option for patients with DMD amenable to exon 53 skipping.


Assuntos
Distrofina , Distrofia Muscular de Duchenne , Distrofina/genética , Distrofina/metabolismo , Humanos , Masculino , Distrofia Muscular de Duchenne/tratamento farmacológico , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Oligonucleotídeos/efeitos adversos , Oligonucleotídeos Antissenso
15.
JAMA Netw Open ; 5(1): e2144178, 2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-35076703

RESUMO

Importance: Vamorolone is a synthetic steroidal drug with potent anti-inflammatory properties. Initial open-label, multiple ascending dose-finding studies of vamorolone among boys with Duchenne muscular dystrophy (DMD) found significant motor function improvement after 6 months treatment in higher-dose (ie, ≥2.0 mg/kg/d) groups. Objective: To investigate outcomes after 30 months of open-label vamorolone treatment. Design, Setting, and Participants: This nonrandomized controlled trial was conducted by the Cooperative International Neuromuscular Research Group at 11 US and non-US study sites. Participants were 46 boys ages 4.5 to 7.5 years with DMD who completed the 6-month dose-finding study. Data were analyzed from July 2020 through November 2021. Interventions: Participants were enrolled in a 24-month, long-term extension (LTE) study with vamorolone dose escalated to 2.0 or 6.0 mg/kg/d. Main Outcomes and Measures: Change in time-to-stand (TTSTAND) velocity from dose-finding baseline to end of LTE study was the primary outcome. Efficacy assessments included timed function tests, 6-minute walk test, and NorthStar Ambulatory Assessment (NSAA). Participants with DMD treated with glucocorticoids from the Duchenne Natural History Study (DNHS) and NorthStar United Kingdom (NSUK) Network were matched and compared with participants in the LTE study receiving higher doses of vamorolone. Results: Among 46 boys with DMD who completed the dose-finding study, 41 boys (mean [SD] age, 5.33 [0.96] years) completed the LTE study. Among 21 participants treated with higher-dose (ie, ≥2.0 mg/kg/d) vamorolone consistently throughout the 6-month dose-finding and 24-month LTE studies with data available at 30 months, there was a decrease in mean (SD) TTSTAND velocity from baseline to 30 months (0.206 [0.070] rises/s vs 0.189 (0.124) rises/s), which was not a statistically significant change (-0.011 rises/s; CI, -0.068 to 0.046 rises/s). There were no statistically significant differences between participants receiving higher-dose vamorolone and matched participants in the historical control groups receiving glucocorticoid treatment (75 patients in DNHS and 110 patients in NSUK) over a 2-year period in NSAA total score change (0.22 units vs NSUK; 95% CI, -4.48 to 4.04]; P = .92), body mass index z score change (0.002 vs DNHS SD/mo; 95% CI, -0.006 to 0.010; P = .58), or timed function test change. Vamorolone at doses up to 6.0 mg/kg/d was well tolerated, with 5 of 46 participants discontinuing prematurely and for reasons not associated with study drug. Participants in the DNHS treated with glucocorticoids had significant growth delay in comparison with participants treated with vamorolone who had stable height percentiles (0.37 percentile/mo; 95% CI, 0.23 to 0.52 percentile/mo) over time. Conclusions and Relevance: This study found that vamorolone treatment was not associated with a change in TTSTAND velocity from baseline to 30 months among boys with DMD aged 4 to 7 years at enrollment. Vamorolone was associated with maintenance of muscle strength and function up to 30 months, similar to standard of care glucocorticoid therapy, and improved height velocity compared with growth deceleration associated with glucocorticoid treatment, suggesting that vamorolone may be an attractive candidate for treatment of DMD. Trial Registration: ClinicalTrials.gov Identifier: NCT03038399.


Assuntos
Anti-Inflamatórios/uso terapêutico , Distrofia Muscular de Duchenne/tratamento farmacológico , Pregnadienodiois/uso terapêutico , Estatura/efeitos dos fármacos , Criança , Pré-Escolar , Glucocorticoides/uso terapêutico , Humanos , Masculino , Força Muscular/efeitos dos fármacos , Distrofia Muscular de Duchenne/fisiopatologia , Resultado do Tratamento , Reino Unido
16.
J Acoust Soc Am ; 150(3): 2282, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34598629

RESUMO

An acoustic black hole (ABH) plate is a lightweight and high loss panel structure for effective reduction of vibration and radiated sound. It is understood that the high loss local ABH modes can be designed at desired frequencies by changing the size of the ABH cell(s). The ABH cell diameter (size) and minimum thickness play dominant roles in the performance of the ABH effect. In addition, attaching tuning masses at the center of the ABH cells has been shown to alter the local ABH modes with the result of improved low-frequency performance. In this work, the transmission loss (TL) of an embedded multi-scale ABH plate was investigated. The embedded large and small ABH cells were particularly designed to cut-on below and above the critical frequency of the plate, respectively. The results were compared with a uniform plate and an embedded single-scale ABH plate. Discrete tuning masses were attached at the ABH cells' center to manipulate the ABH cut-on modes to increase the TL further. The results show that the damped multi-scale ABH plate achieved a 10 dB TL increase, flattened the TL curve, and nearly eliminated the plate coincidence dip. Manipulating the high loss ABH modes by adding tuning masses (20 g each) demonstrated a 2 dB increase at low frequencies within the mass-law range. Although damping material was applied, adding some mass, an overall weight advantage was still attained compared to the uniform plate. The damped multi-scale ABH plate is 7% lighter than the uniform plate.

17.
J Physiol ; 599(23): 5215-5227, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34569076

RESUMO

Boys with Duchenne muscular dystrophy (DMD) experience a progressive loss of functional muscle mass, with fibrosis and lipid accumulation. Accurate evaluation of whole-body functional muscle mass (MM) in DMD patients has not previously been possible and the rate of synthesis of muscle proteins remains unexplored. We used non-invasive, stable isotope-based methods from plasma and urine to measure the fractional rate of muscle protein synthesis (FSR) functional muscle mass (MM), and fat free mass (FFM) in 10 DMD (6-17 years) and 9 age-matched healthy subjects. An oral dose of D3 creatine in 70% 2 H2 O was administered to determine MM and FFM followed by daily 70% 2 H2 O to measure protein FSR. Functional MM was profoundly reduced in DMD subjects compared to controls (17% vs. 41% of body weight, P < 0.0001), particularly in older, non-ambulant patients in whom functional MM was extraordinarily low (<13% body weight). We explored the urine proteome to measure FSR of skeletal muscle-derived proteins. Titin, myosin light chain and gelsolin FSRs were substantially lower in DMD subjects compared to controls (27%, 11% and 40% of control, respectively, P < 0.0001) and were strongly correlated. There were no differences in muscle-derived sarcoplasmic proteins FSRs (creatine kinase M-type and carbonic anhydrase-3) measured in plasma. These data demonstrate that both functional MM, body composition and muscle protein synthesis rates can be quantified non-invasively and are markedly different between DMD and control subjects and suggest that the rate of contractile but not sarcoplasmic protein synthesis is affected by a lack of dystrophin. KEY POINTS: Duchenne muscular dystrophy (DMD) results in a progressive loss of functional skeletal muscle but total body functional muscle mass or rates of muscle protein synthesis have not previously been assessed in these patients. D3 -creatine dilution was used to measure total functional muscle mass and oral 2 H2 O was used to examine the rates of muscle protein synthesis non-invasively in boys with DMD and healthy controls using urine samples. Muscle mass was profoundly lower in DMD compared to control subjects, particularly in older, non-ambulant patients. The rates of contractile protein synthesis but not sarcoplasmic proteins were substantially lower in DMD. These results may provide non-invasive biomarkers for disease progression and therapeutic efficacy in DMD and other neuromuscular diseases.


Assuntos
Proteínas Contráteis/biossíntese , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne , Adolescente , Criança , Humanos , Masculino , Contração Muscular , Distrofia Muscular de Duchenne/fisiopatologia , Proteoma
18.
Mol Genet Genomic Med ; 9(5): e1664, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33755338

RESUMO

BACKGROUND: Gene therapy offers an etiologically targeted treatment for genetic disorders. Little is known about the acceptance of mortality risk among patients with progressive, fatal conditions. We assessed patients' and caregivers' maximum acceptable risk (MAR) of mortality for gene therapy when used to treat Duchenne muscular dystrophy (DMD). METHODS: The threshold technique was used to assess tolerance for mortality risks using a hypothetical vignette. Gene therapy was described as non-curative and resulting in a slowing of progression and with a 10-year benefit duration. MAR was analyzed using interval regression for gene therapy initiated "now"; in the last year of walking well; in the last year of being able to bring arms to mouth; and in newborns (for caregivers only). RESULTS: Two hundred eighty-five caregivers and 35 patients reported the greatest MAR for gene therapy initiated in last year of being able to lift arms (mean MAR 6.3%), followed by last year of walking well (mean MAR 4.4%), when used "now" (mean MAR 3.5%), and when used in the newborn period (mean MAR 2.1%, caregivers only). About 35% would accept ≥200/2000 risk in the last year of being able to lift arms. Non-ambulatory status predicted accepting 1.8 additional points in MAR "now" compared with ambulatory status (p = 0.010). Respondent type (caregiver or patient) did not predict MAR. CONCLUSION: In this first quantitative study to assess MAR associated with first-generation DMD gene therapy, we find relatively high tolerance for mortality risk in response to a non-curative treatment scenario. Risk tolerance increased with disease progression. Patients and caregivers did not have significantly different MAR. These results have implications for protocol development and shared decision making.


Assuntos
Atitude , Terapia Genética/psicologia , Distrofia Muscular de Duchenne/terapia , Adulto , Cuidadores/psicologia , Humanos , Masculino , Distrofia Muscular de Duchenne/psicologia , Pacientes/psicologia , Assunção de Riscos
19.
Lancet Neurol ; 20(4): 284-293, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33743238

RESUMO

BACKGROUND: Spinal muscular atrophy type 1 is a motor neuron disorder resulting in death or the need for permanent ventilation by age 2 years. We aimed to evaluate the safety and efficacy of onasemnogene abeparvovec (previously known as AVXS-101), a gene therapy delivering the survival motor neuron gene (SMN), in symptomatic patients (identified through clinical examination) with infantile-onset spinal muscular atrophy. METHODS: STR1VE was an open-label, single-arm, single-dose, phase 3 trial done at 12 hospitals and universities in the USA. Eligible patients had to be younger than 6 months and have spinal muscular atrophy with biallelic SMN1 mutations (deletion or point mutations) and one or two copies of SMN2. Patients received a one-time intravenous infusion of onasemnogene abeparvovec (1·1 × 1014 vector genomes per kg) for 30-60 min. During the outpatient follow-up, patients were assessed once per week, beginning at day 7 post-infusion for 4 weeks and then once per month until the end of the study (age 18 months or early termination). Coprimary efficacy outcomes were independent sitting for 30 s or longer (Bayley-III item 26) at the 18 month of age study visit and survival (absence of death or permanent ventilation) at age 14 months. Safety was assessed through evaluation of adverse events, concomitant medication usage, physical examinations, vital sign assessments, cardiac assessments, and laboratory evaluation. Primary efficacy endpoints for the intention-to-treat population were compared with untreated infants aged 6 months or younger (n=23) with spinal muscular atrophy type 1 (biallelic deletion of SMN1 and two copies of SMN2) from the Pediatric Neuromuscular Clinical Research (PNCR) dataset. This trial is registered with ClinicalTrials.gov, NCT03306277 (completed). FINDINGS: From Oct 24, 2017, to Nov 12, 2019, 22 patients with spinal muscular atrophy type 1 were eligible and received onasemnogene abeparvovec. 13 (59%, 97·5% CI 36-100) of 22 patients achieved functional independent sitting for 30 s or longer at the 18 month of age study visit (vs 0 of 23 patients in the untreated PNCR cohort; p<0·0001). 20 patients (91%, 79-100]) survived free from permanent ventilation at age 14 months (vs 6 [26%], 8-44; p<0·0001 in the untreated PNCR cohort). All patients who received onasemnogene abeparvovec had at least one adverse event (most common was pyrexia). The most frequently reported serious adverse events were bronchiolitis, pneumonia, respiratory distress, and respiratory syncytial virus bronchiolitis. Three serious adverse events were related or possibly related to the treatment (two patients had elevated hepatic aminotransferases, and one had hydrocephalus). INTERPRETATION: Results from this multicentre trial build on findings from the phase 1 START study by showing safety and efficacy of commercial grade onasemnogene abeparvovec. Onasemnogene abeparvovec showed statistical superiority and clinically meaningful responses when compared with observations from the PNCR natural history cohort. The favourable benefit-risk profile shown in this study supports the use of onasemnogene abeparvovec for treatment of symptomatic patients with genetic or clinical characteristics predictive of infantile-onset spinal muscular atrophy type 1. FUNDING: Novartis Gene Therapies.


Assuntos
Produtos Biológicos/uso terapêutico , Terapia Genética/métodos , Proteínas Recombinantes de Fusão/uso terapêutico , Atrofias Musculares Espinais da Infância/tratamento farmacológico , Atrofias Musculares Espinais da Infância/genética , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Proteína 2 de Sobrevivência do Neurônio Motor/genética , Resultado do Tratamento
20.
J Pers Med ; 10(4)2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33228131

RESUMO

The development of therapeutics for muscle diseases such as facioscapulohumeral dystrophy (FSHD) is impeded by a lack of objective, minimally invasive biomarkers. Here we identify circulating miRNAs and proteins that are dysregulated in early-onset FSHD patients to develop blood-based molecular biomarkers. Plasma samples from clinically characterized individuals with early-onset FSHD provide a discovery group and are compared to healthy control volunteers. Low-density quantitative polymerase chain reaction (PCR)-based arrays identify 19 candidate miRNAs, while mass spectrometry proteomic analysis identifies 13 candidate proteins. Bioinformatic analysis of chromatin immunoprecipitation (ChIP)-seq data shows that the FSHD-dysregulated DUX4 transcription factor binds to regulatory regions of several candidate miRNAs. This panel of miRNAs also shows ChIP signatures consistent with regulation by additional transcription factors which are up-regulated in FSHD (FOS, EGR1, MYC, and YY1). Validation studies in a separate group of patients with FSHD show consistent up-regulation of miR-100, miR-103, miR-146b, miR-29b, miR-34a, miR-454, miR-505, and miR-576. An increase in the expression of S100A8 protein, an inflammatory regulatory factor and subunit of calprotectin, is validated by Enzyme-Linked Immunosorbent Assay (ELISA). Bioinformatic analyses of proteomics and miRNA data further support a model of calprotectin and toll-like receptor 4 (TLR4) pathway dysregulation in FSHD. Moving forward, this panel of miRNAs, along with S100A8 and calprotectin, merit further investigation as monitoring and pharmacodynamic biomarkers for FSHD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA