Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Biol Methods Protoc ; 8(1): bpad031, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38046463

RESUMO

Aquaporins (AQPs), transmembrane water-conducting channels, have earned a great deal of scrutiny for their critical physiological roles in healthy and disease cell states, especially in the biomedical field. Numerous methods have been implemented to elucidate the involvement of AQP-mediated water transport and downstream signaling activation in eliciting whole cell, tissue, and organ functional responses. To modulate these responses, other methods have been employed to investigate AQP druggability. This review discusses standard in vitro, in vivo, and in silico methods for studying AQPs, especially for biomedical and mammalian cell biology applications. We also propose some new techniques and approaches for future AQP research to address current gaps in methodology.

2.
Adv Healthc Mater ; 12(26): e2300879, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37335811

RESUMO

Extracellular vesicles (EVs) derived from mesenchymal stem/stromal cells (MSCs) have recently been explored in clinical trials for treatment of diseases with complex pathophysiologies. However, production of MSC EVs is currently hampered by donor-specific characteristics and limited ex vivo expansion capabilities before decreased potency, thus restricting their potential as a scalable and reproducible therapeutic. Induced pluripotent stem cells (iPSCs) represent a self-renewing source for obtaining differentiated iPSC-derived MSCs (iMSCs), circumventing both scalability and donor variability concerns for therapeutic EV production. Thus, it is initially sought to evaluate the therapeutic potential of iMSC EVs. Interestingly, while utilizing undifferentiated iPSC EVs as a control, it is found that their vascularization bioactivity is similar and their anti-inflammatory bioactivity is superior to donor-matched iMSC EVs in cell-based assays. To supplement this initial in vitro bioactivity screen, a diabetic wound healing mouse model where both the pro-vascularization and anti-inflammatory activity of these EVs would be beneficial is employed. In this in vivo model, iPSC EVs more effectively mediate inflammation resolution within the wound bed. Combined with the lack of additional differentiation steps required for iMSC generation, these results support the use of undifferentiated iPSCs as a source for therapeutic EV production with respect to both scalability and efficacy.


Assuntos
Diabetes Mellitus , Vesículas Extracelulares , Células-Tronco Pluripotentes Induzidas , Camundongos , Animais , Diferenciação Celular/fisiologia , Anti-Inflamatórios , Cicatrização
3.
Am J Physiol Cell Physiol ; 325(1): C208-C223, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37246634

RESUMO

Cell migration is an essential process that underlies many physiological processes, including the immune response, organogenesis in the embryo, and angiogenesis, as well as pathological processes such as cancer metastasis. Cells have at their disposal a variety of migratory behaviors and mechanisms that seem to be specific to cell type and the microenvironment. Research over the past two decades has elucidated the water channel protein family of aquaporins (AQPs) as a regulator of many cell migration-related processes, from physical phenomena to biological signaling pathways. The roles that AQPs play in cell migration are both cell type- and isoform-specific; thus, a large swath of information has accumulated as researchers seek to identify the responses across these distinct variables. There does not seem to be a universal role that AQPs play in cell migration; the complex interplay between AQPs and cell volume management, signaling pathway activation, and in a few identified circumstances, gene expression regulation, has shown the intricate, and perhaps paradoxical, role of AQPs in cell migration. The objective of this review is to provide an organized and integrated collection of recent work that has elucidated the many mechanisms by which AQPs regulate cell migration.NEW & NOTEWORTHY Research has elucidated the water channel protein family of aquaporins (AQPs) as a regulator of many cell migration-related processes, from physical phenomena to biological signaling pathways. The roles that AQPs play in cell migration are both cell type- and isoform-specific; thus, a large swath of information has accumulated as researchers seek to identify the responses across these distinct variables. This review compiles insights into the recent findings linking AQPs to physiological cell migration.


Assuntos
Aquaporinas , Aquaporinas/genética , Aquaporinas/metabolismo , Regulação da Expressão Gênica , Transdução de Sinais , Movimento Celular
4.
bioRxiv ; 2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-36993554

RESUMO

Extracellular vesicles (EVs) derived from mesenchymal stem/stromal cells (MSCs) have recently been widely explored in clinical trials for treatment of diseases with complex pathophysiology. However, production of MSC EVs is currently hampered by donor-specific characteristics and limited ex vivo expansion capabilities before decreased potency, thus restricting their potential as a scalable and reproducible therapeutic. Induced pluripotent stem cells (iPSCs) represent a self-renewing source for obtaining differentiated iPSC-derived MSCs (iMSCs), circumventing both scalability and donor variability concerns for therapeutic EV production. Thus, we initially sought to evaluate the therapeutic potential of iMSC EVs. Interestingly, while utilizing undifferentiated iPSC EVs as a control, we found that their vascularization bioactivity was similar and their anti-inflammatory bioactivity was superior to donor-matched iMSC EVs in cell-based assays. To supplement this initial in vitro bioactivity screen, we employed a diabetic wound healing mouse model where both the pro-vascularization and anti-inflammatory activity of these EVs would be beneficial. In this in vivo model, iPSC EVs more effectively mediated inflammation resolution within the wound bed. Combined with the lack of additional differentiation steps required for iMSC generation, these results support the use of undifferentiated iPSCs as a source for therapeutic EV production with respect to both scalability and efficacy.

5.
Cell Mol Life Sci ; 80(2): 48, 2023 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-36682037

RESUMO

Dysregulated cell migration and invasion are hallmarks of many disease states. This dysregulated migratory behavior is influenced by the changes in expression of aquaporins (AQPs) that occur during pathogenesis, including conditions such as cancer, endometriosis, and arthritis. The ubiquitous function of AQPs in migration of diseased cells makes them a crucial target for potential therapeutics; this possibility has led to extensive research into the specific mechanisms underlying AQP-mediated diseased cell migration. The functions of AQPs depend on a diverse set of variables including cell type, AQP isoform, disease state, cell microenvironments, and even the subcellular localization of AQPs. To consolidate the considerable work that has been conducted across these numerous variables, here we summarize and review the last decade's research covering the role of AQPs in the migration and invasion of cells in diseased states.


Assuntos
Aquaporinas , Endometriose , Feminino , Humanos , Aquaporinas/metabolismo , Isoformas de Proteínas/metabolismo , Movimento Celular/fisiologia
6.
J Plast Reconstr Aesthet Surg ; 75(4): 1372-1379, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34955395

RESUMO

BACKGROUND: Abnormal ratios of peripheral blood cells, e.g. neutrophil-lymphocyte ratio (NLR), are strongly associated with poor outcomes in numerous cancers. In soft-tissue sarcoma (STS), the NLR has been studied in populations outside the UK although many have major methodological flaws, which represents the rationale for this study. METHODS: Over 17 years old (2002-2019) adults with extremity STS were included. The baseline NLR (at the time of diagnosis) was calculated. The association between NLR, disease recurrence and survival was explored using cubic splines and a threshold of 3 selected, which is in keeping with the literature. Multivariable Cox regression was used to estimate overall survival, disease-free survival and recurrence with Hazard Ratios (HR) and 95% confidence intervals (CI). RESULTS: Overall, 401 patients were included. The median follow-up was 3 years 8 months (interquartile range 1 years 7 months to 5 years 2 months). During surveillance 148 died (37%), of which 123 (76%) were attributable to sarcoma. At the time of diagnosis, an NLR≥3 was independently associated with worse overall survival (adjusted HR 1.44 [95% 1.01, 2.03]). However, the baseline NLR was not associated with the risk of recurrence (adjusted HR 0.98 [95% CI 0.62, 1.57]) or disease-free survival (adjusted HR 1.11 [95% CI 0.79, 1.56]). CONCLUSIONS: At the time of diagnosis of STS, the NLR is strongly associated with survival and may serve as a cheap and readily available biomarker to personalise treatment plans for patients.


Assuntos
Sarcoma , Neoplasias de Tecidos Moles , Adolescente , Adulto , Estudos de Coortes , Intervalo Livre de Doença , Humanos , Linfócitos , Recidiva Local de Neoplasia , Neutrófilos , Prognóstico
7.
Mol Biol Cell ; 32(22): ar41, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34731044

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a chronic disease of the lung caused by a rampant inflammatory response that results in the deposition of excessive extracellular matrix (ECM). IPF patient lungs also develop fibroblastic foci that consist of activated fibroblasts and myofibroblasts. In concert with ECM deposition, the increased cell density within fibroblastic foci imposes confining forces on lung fibroblasts. In this work, we observed that increased cell density increases the incidence of the fibroblast-to-myofibroblast transition (FMT), but mechanical confinement imposed by micropillars has no effect on FMT incidence. We found that human lung fibroblasts (HLFs) express more α-SMA and deposit more collagen matrix, which are both characteristics of myofibroblasts, in response to TGF-ß1 when cells are seeded at a high density compared with a medium or a low density. These results support the hypothesis that HLFs undergo FMT more readily in response to TGF-ß1 when cells are densely packed, and this effect could be dependent on increased OB-cadherin expression. This work demonstrates that cell density is an important factor to consider when modelling IPF in vitro, and it may suggest decreasing cell density within fibroblastic foci as a strategy to reduce IPF burden.


Assuntos
Fibroblastos/citologia , Pulmão/citologia , Miofibroblastos/citologia , Actinas/metabolismo , Contagem de Células , Células Cultivadas , Colágeno/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Fibrose Pulmonar Idiopática/patologia , Miofibroblastos/metabolismo , Fator de Crescimento Transformador beta1/farmacologia
8.
Biointerphases ; 15(3): 031007, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32456440

RESUMO

Antimicrobial peptides (AMPs) are attractive as biomaterial coatings because they have broad spectrum activity against different microbes, with a low likelihood of incurring antimicrobial resistance. Direct action against the bacterial membrane is the most common mechanism of action (MOA) of AMPs, with specific MOAs dependent on membrane composition, peptide concentration, and environmental factors that include temperature. Chrysophsin-1 (CHY1) is a broad spectrum salt-tolerant AMP that is derived from a marine fish. A cysteine modification was made to the peptide to facilitate attachment to a surface, such as a biomedical device. The authors used quartz crystal microbalance with dissipation monitoring to study how temperature (23 and 37 °C) and lipid composition influence the MOA of cysteine-modified peptide (C-CHY1) with model membranes comprised of supported lipid bilayers (SLBs). These two temperatures were used so that the authors could better understand the differences in behavior between typical lab temperatures and physiologic conditions. The authors created model membranes that mimicked properties of Gram-negative and Gram-positive bacteria in order to understand how the mechanisms might differ for different types of bacterial systems. SLB models of Gram-positive bacterial membranes were formed using combinations of phosphatidylcholine, phosphatidylglycerol (PG), and S. aureus-derived lipoteichoic acid (LTA). SLB models of Gram-negative bacterial membranes were formed using combinations of phosphatidylethanolamine (PE), PG, and E. coli-derived lipopolysaccharides (LPS). The molecules that distinguish Gram-positive and Gram-negative membranes (LTA and LPS) have the potential to alter the MOA of C-CHY1 with the SLBs. The authors' results showed that the MOA for the Gram-positive SLBs was not sensitive to temperature, but the LTA addition did have an effect. Specifically, similar trends in frequency and dissipation changes across all overtones were observed, and the same mechanistic trends were observed in the polar plots at 23 and 37 °C. However, when LTA was added, polar plots showed an association between C-CHY1 and LTA, leading to SLB saturation. This was demonstrated by significant changes in dissipation, while the frequency (mass) was not increasing after the saturation point. For the Gram-negative SLBs, the composition did not have a significant effect on MOA, but the authors saw more differences between the two temperatures studied. The authors believe this is due to the fact that the gel-liquid crystal transition temperature of PE is 25 °C, which means that the bilayer is more rigid at 23 °C, compared to temperatures above the transition point. At 23 °C, a significant energetic shift would be required to allow for additional AMP insertion. This could be seen in the polar plots, where there was a steep slope but there was very little mass addition. At 37 °C, the membrane is more fluid and there is less of an energetic requirement for insertion. Therefore, the authors observed greater mass addition and fewer changes in dissipation. A better understanding of C-CHY1 MOA using different SLB models will allow for the more rational design of future therapeutic solutions that make use of antimicrobial peptides, including those involving biomaterial coatings.


Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Membrana Celular/metabolismo , Bactérias Gram-Negativas/citologia , Bactérias Gram-Positivas/citologia , Lipopolissacarídeos/farmacologia , Ácidos Teicoicos/farmacologia , Membrana Celular/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Bicamadas Lipídicas/química , Peptídeos/química , Temperatura
9.
ACS Biomater Sci Eng ; 6(6): 3398-3410, 2020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-33463166

RESUMO

Chronic infected wounds cause more than 23,000 deaths annually. Antibiotics and antiseptics are conventionally used to treat infected wounds; however, they can be toxic to mammalian cells, and their use can contribute to antimicrobial resistance. Antimicrobial peptides (AMPs) have been utilized to address the limitations of antiseptics and antibiotics. In previous work, we modified the human AMP LL37 with collagen-binding domains from collagenase (cCBD) or fibronectin (fCBD) to facilitate peptide tethering and delivery from collagen-based wound dressings. We found that cCBD-LL37 and fCBD-LL37 were retained and active when bound to 100% collagen scaffolds. Collagen wound dressings are commonly made as composites with other materials, such as alginate. The goal of this study was to investigate how the presence of alginate affects the tethering, release, and antimicrobial activity of LL37 and CBD-LL37 peptides adsorbed to commercially available collagen-alginate wound dressings (FIBRACOL Plus-a 90% collagen and 10% alginate wound dressing). We found that over 85% of the LL37, cCBD-LL37, and fCBD-LL37 was retained on FIBRACOL Plus over a 14-day release study (90.3, 85.8, and 98.6%, respectively). Additionally, FIBRACOL Plus samples loaded with peptides were bactericidal toward Pseudomonas aeruginosa, even after 14 days in release buffer but demonstrated no antimicrobial activity against Escherichia coli, Staphylococcus aureus, and Staphylococcus epidermidis. The presence of alginate in solution induced conformational changes in the cCBD-LL37 and LL37 peptides, resulting in increased peptide helicity, and reduced antimicrobial activity against P. aeruginosa. Peptide-loaded FIBRACOL Plus scaffolds were not cytotoxic to human dermal fibroblasts. This study demonstrates that CBD-mediated LL37 tethering is a viable strategy to reduce LL37 toxicity, and how substrate composition plays a crucial role in modulating the antimicrobial activity of tethered AMPs.


Assuntos
Alginatos , Peptídeos Catiônicos Antimicrobianos , Animais , Peptídeos Catiônicos Antimicrobianos/farmacologia , Bandagens , Colágeno , Humanos , Proteínas Citotóxicas Formadoras de Poros
10.
Behav Brain Res ; 356: 78-88, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30063948

RESUMO

Pathological avoidance behavior in anxiety and anxiety-related disorders has a large role in the persistence and severity of disease. Individuals are cued to avoid potential aversive events by learned danger and safety signals in the environment. Individuals with anxiety demonstrate a bias to utilize danger signals more than safety signals, in contrast to those without these disorders. Therefore, the present study investigated if danger and safety signals differentially influenced persistent avoidance in an animal model of anxiety-vulnerability, the Wistar Kyoto (WKY) rat, relative to the outbred Sprague Dawley (SD) rat. Persistent avoidance was assessed using extinction protocols. When danger or safety signals were present during extinction, WKY rats were slower to extinguish the avoidance response compared to SD rats. In contrast, when danger and safety signals were both present during extinction, WKY and SD rats extinguished at a similar rate. Differences in contextual and configural learning were explored as potential causes of the strain differences in the use of safety and danger signals in avoidance extinction. Strains did not differ in avoidance extinction when context was manipulated. However, WKY rats were impaired in configural learning using a negative patterning task. The results indicate that danger and safety signals may impair avoidance extinction in anxiety-vulnerable individuals due to impaired configural learning. These findings have important implications for understanding the etiology of anxiety disorders and may improve their diagnosis and treatment.


Assuntos
Ansiedade/fisiopatologia , Aprendizagem da Esquiva/fisiologia , Animais , Transtornos de Ansiedade/fisiopatologia , Condicionamento Operante/fisiologia , Sinais (Psicologia) , Extinção Psicológica/fisiologia , Masculino , Ratos , Ratos Endogâmicos WKY , Ratos Sprague-Dawley , Fatores de Risco , Especificidade da Espécie
11.
Neuropharmacology ; 137: 372-381, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29750979

RESUMO

Anxiety disorders and posttraumatic stress disorder (PTSD) share a common feature of pathological avoidance behavior. The Wistar Kyoto (WKY) rat has been used as a model of anxiety vulnerability, expressing a behaviorally inhibited temperament, acquiring avoidance behavior more rapidly and displaying extinction-resistant avoidance compared to Sprague Dawley (SD) rats. Subanesthetic levels of ketamine have gained attention as a rapid antidepressant in treatment-resistant depression. While traditional antidepressants are commonly used to treat anxiety disorders and PTSD, the therapeutic utility of ketamine for these disorders is much less understood. The hippocampus is critical for the actions of antidepressants, is a structure implicated in anxiety disorders and PTSD, and is necessary for extinction of avoidance in SD rats. WKY rats have impaired hippocampal long-term potentiation (LTP), suggesting that persistent avoidance in WKY rats may be due to deficient hippocampal synaptic plasticity. In the present study, we hypothesized that ketamine would facilitate extinction of avoidance learning in WKY rats, and do so by enhancing hippocampal synaptic plasticity. As predicted, ketamine facilitated extinction of avoidance behavior in a subset of WKY rats (responders), with effects lasting at least three weeks. Additionally, LTP in these rats was enhanced by ketamine. Ketamine was not effective in facilitating avoidance extinction or in modifying LTP in WKY non-responders. The results suggest that subanesthetic levels of ketamine may be useful for treating anxiety disorders by reducing avoidance behaviors when combined with extinction conditions. Moreover, ketamine may have its long-lasting behavioral effects through enhancing hippocampal synaptic plasticity.


Assuntos
Ansiolíticos/farmacologia , Transtornos de Ansiedade/tratamento farmacológico , Transtornos de Ansiedade/fisiopatologia , Aprendizagem da Esquiva/efeitos dos fármacos , Ketamina/farmacologia , Potenciação de Longa Duração/efeitos dos fármacos , Animais , Extinção Psicológica/efeitos dos fármacos , Predisposição Genética para Doença , Hipocampo/efeitos dos fármacos , Hipocampo/fisiopatologia , Masculino , Ratos Endogâmicos WKY , Ratos Sprague-Dawley , Resiliência Psicológica/efeitos dos fármacos , Especificidade da Espécie
13.
Physiol Behav ; 164(Pt A): 198-206, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27235339

RESUMO

OBJECTIVE: The perseveration of avoidance behavior, even in the absence of once threatening stimuli, is a key feature of anxiety and related psychiatric conditions. This phenomenon can be observed in the Wistar-Kyoto (WKY) rat which, in comparison to outbred controls, demonstrates impaired extinction of avoidance behavior. Also characteristic of the WKY rat is abnormalities of the neurocircuitry and neuroplasticity of the medial prefrontal cortex (mPFC). One means of reducing physiological responses to anxiety, and conditioned fear, in social species is the presence of a conspecific animal. The current study investigates whether or not pair-housed WKY rats would show facilitated extinction of avoidance in comparison to individual-housed WKY rats, and whether or not pair-housing influences mPFC activation during lever-press avoidance. METHODS: Male WKY rats were assigned to individual-housed and pair-housed conditions. Rats were trained in lever-press avoidance. Each session of lever-press avoidance consisted of 20 trials, where pressing a lever in response to a warning tone prevented foot-shocks. Rats received 12 acquisition sessions over 4weeks; followed by 6 extinction sessions over 2weeks, where foot-shocks ceased to be delivered. Brains were harvested 90min after trials 1 and 10 of extinction sessions 1 and 6, and mPFC sections underwent c-Fos staining as a measure of activation. RESULTS: Pair-housed rats showed facilitated lever-press avoidance extinction rates, but the main cause for this overall difference was a selective facilitation of within-session extinction. Similar to individual-housed rats, pair-housed rats continued to avoid during trial 1 of extinction even when the avoidance responding had been significantly reduced by the end of the previous session. Pair-housed rats sacrificed on trial 1 showed greater c-Fos expression in the anterior cingulate cortex and prelimbic cortex subregions of the mPFC compared individual-housed rats sacrificed on trial 1. CONCLUSION: This data shows pair-housing to facilitate the extinction of avoidance, and to influence activity of the mPFC, in WKY rats. Despite this environmental manipulation, the pair-housed WKY rats continued to show avoidance responding on trial 1 of extinction sessions. This demonstrates that within-session extinction can be dissociated from between-session extinction-resistance in WKY rats. Furthermore, it suggests the individual-housing of WKY rats selectively slows within-session extinction, possibly by reducing neuronal activity of the mPFC during the testing situation.


Assuntos
Ansiedade/metabolismo , Aprendizagem da Esquiva/fisiologia , Extinção Psicológica/fisiologia , Abrigo para Animais , Córtex Pré-Frontal/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Animais , Ansiedade/patologia , Eletrochoque , , Imuno-Histoquímica , Masculino , Testes Neuropsicológicos , Córtex Pré-Frontal/patologia , Distribuição Aleatória , Ratos Endogâmicos WKY , Comportamento Social
14.
Exp Neurol ; 275 Pt 1: 59-68, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26546833

RESUMO

Individuals exhibiting an anxiety disorder are believed to possess an innate vulnerability that makes them susceptible to the disorder. Anxiety disorders are also associated with abnormalities in the interconnected brain regions of the amygdala and prefrontal cortex (PFC). However, the link between anxiety vulnerability and amygdala-PFC dysfunction is currently unclear. Accordingly, the present study sought to determine if innate dysfunction within the amygdala to PFC projection underlies the susceptibility to develop anxiety-like behavior, using an anxiety vulnerable rodent model. The inbred Wistar Kyoto (WKY) rat was used to model vulnerability, as this strain naturally expresses extinction-resistant avoidance; a behavior that models the symptom of avoidance present in anxiety disorders. Synaptic plasticity was assessed within the projection from the basolateral nucleus of the amygdala (BLA) to the prelimbic cortical subdivision of the PFC in WKY and Sprague Dawley (SD) rats. While WKY rats exhibited normal paired-pulse plasticity, they did not maintain long-term potentiation (LTP) as SD rats. Thus, impaired plasticity within the BLA-PL cortex projection may contribute to extinction resistant avoidance of WKY, as lesions of the PL cortex in SD rats impaired extinction of avoidance similar to WKY rats. Treatment with d-cycloserine to reverse the impaired LTP in WKY rats was unsuccessful. The lack of LTP in WKY rats was associated with a significant reduction of NMDA receptors containing NR2A subunits in the PL cortex. Thus, dysfunction in amygdala-PFC plasticity is innate in anxiety vulnerable rats and may promote extinction-resistant avoidance by disrupting communication between the amygdala and prefrontal cortex.


Assuntos
Tonsila do Cerebelo/fisiopatologia , Transtornos de Ansiedade/fisiopatologia , Plasticidade Neuronal/fisiologia , Córtex Pré-Frontal/fisiopatologia , Animais , Aprendizagem da Esquiva/fisiologia , Modelos Animais de Doenças , Suscetibilidade a Doenças , Extinção Psicológica/fisiologia , Masculino , Vias Neurais/fisiopatologia , Ratos , Ratos Endogâmicos WKY , Ratos Sprague-Dawley
15.
Zootaxa ; 3919(1): 111-56, 2015 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-25781121

RESUMO

A number of changes to the status of genus group names in water mites are proposed to foster a more consistent and phylogenetically defensible approach to the ranking of taxa at this level of the classification. The water mite taxa Acercopsis Viets, 1926 (Pionidae: Tiphyinae), Madawaska Habeeb, 1954 (Pionidae: Foreliinae), Brachypodopsis Piersig, 1903, Cubanaxonopsis Orghidan & Gruia, 1981, Hexaxonopsis Viets, 1926, Paraxonopsis Motas & Tanasachi, 1947, Vicinaxonopsis Cook, 1974, Parabrachypoda Viets, 1929, and Ocybrachypoda Cook, 1974 (Aturidae: Axonopsinae), Ameribrachypoda Smith, 1991 (Aturidae: Aturinae), and Allomideopsis Smith, 1990 (Nudomideopsidae) are elevated in rank from subgenera to full genera to reflect current knowledge of their species diversity, morphological distinctness, relationships and apparent age. In light of the above changes in the subfamily Axonopsinae, the subgenera Kalobrachypoda Viets, 1929 and Navinaxonopsis Cook, 1967 are transferred from the genus Axonopsis to the genus Brachypodopsis, the subgenus Plesiobrachypoda Viets, 1942 is transferred from the genus Axonopsis to the genus Hexaxonopsis, and the species formerly placed in the subgenus Hemibrachypoda Viets, 1937 are transferred from the genus Brachypoda to the genus Parabrachypoda Viets, 1929, and Hemibrachypoda is placed in synonymy with Parabrachypoda. The family group taxa to which all of these genera belong are reviewed to provide context for the proposed changes.


Assuntos
Ácaros/classificação , Animais , Feminino , Masculino
16.
Front Behav Neurosci ; 8: 403, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25484860

RESUMO

As a model of anxiety disorder vulnerability, male Wistar-Kyoto (WKY) rats acquire lever-press avoidance behavior more readily than outbred Sprague-Dawley rats, and their acquisition is enhanced by the presence of a discrete signal presented during the inter-trial intervals (ITIs), suggesting that it is perceived as a safety signal. A series of experiments were conducted to determine if this is the case. Additional experiments investigated if the avoidance facilitation relies upon processing through medial prefrontal cortex (mPFC). The results suggest that the ITI-signal facilitates acquisition during the early stages of the avoidance acquisition process, when the rats are initially acquiring escape behavior and then transitioning to avoidance behavior. Post-avoidance introduction of the visual ITI-signal into other associative learning tasks failed to confirm that the visual stimulus had acquired the properties of a conditioned inhibitor. Shortening the signal from the entirety of the 3 min ITI to only the first 5 s of the 3 min ITI slowed acquisition during the first four sessions, suggesting the flashing light (FL) is not functioning as a feedback signal. The prelimbic (PL) cortex showed greater activation during the period of training when the transition from escape responding to avoidance responding occurs. Only combined PL + infralimbic cortex lesions modestly slowed avoidance acquisition, but PL-cortex lesions slowed avoidance response latencies. Thus, the FL ITI-signal is not likely perceived as a safety signal nor is it serving as a feedback signal. The functional role of the PL-cortex appears to be to increase the drive toward responding to the threat of the warning signal. Hence, avoidance susceptibility displayed by male WKY rats may be driven, in part, both by external stimuli (ITI signal) as well as by enhanced threat recognition to the warning signal via the PL cortex.

17.
J Neurosurg Pediatr ; 14(6): 682-7, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25325419

RESUMO

OBJECT: There are no published papers examining the role of ethnicity on suture involvement in nonsyndromic craniosynostosis. The authors sought to examine whether there is a significant difference in the epidemiological pattern of suture(s) affected between different ethnic groups attending a regional craniofacial clinic with a diagnosis of nonsyndromic craniosynostosis. METHODS: A 5-year retrospective case-notes analysis of all cases involving patients attending a regional craniofacial clinic was undertaken. Cases were coded for the patients' declared ethnicity, suture(s) affected by synostosis, and the decision whether to have surgical correction of synostosis. The chi-square test was used to determine whether there were any differences in site of suture affected between ethnic groups. RESULTS: A total of 312 cases were identified. Of these 312 cases, ethnicity data were available for 296 cases (95%). The patient population was dominated by 2 ethnic groups: white patients (222 cases) and Asian patients (56 cases). There were both more cases of complex synostosis and fewer cases of sagittal synostosis than expected in the Asian patient cohort (χ(2) = 9.217, p = 0.027). CONCLUSIONS: There is a statistically significant difference in the prevalence of the various sutures affected within the nonsyndromic craniosynostosis patient cohort when Asian patients are compared with white patients. The data from this study also suggest that nonsyndromic craniosynostosis is more prevalent in the Asian community than in the white community, although there may be inaccuracies in the estimates of the background population data. A larger-scale, multinational analysis is needed to further evaluate the relationship between ethnicity and nonsyndromic craniosynostosis.


Assuntos
Povo Asiático/estatística & dados numéricos , Craniossinostoses/etnologia , Craniossinostoses/cirurgia , Crânio/anormalidades , População Branca/estatística & dados numéricos , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Paquistão/etnologia , Estudos Retrospectivos , Reino Unido/epidemiologia
18.
Front Behav Neurosci ; 8: 322, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25309372

RESUMO

Avoidance and its perseveration represent key features of anxiety disorders. Both pharmacological and behavioral approaches (i.e., anxiolytics and extinction therapy) have been utilized to modulate avoidance behavior in patients. However, the outcome has not always been desirable. Part of the reason is attributed to the diverse neuropathology of anxiety disorders. Here, we investigated the effect of psychotropic drugs that target various monoamine systems on extinction of avoidance behavior using lever-press avoidance task. Here, we used the Wistar-Kyoto (WKY) rat, a unique rat model that exhibits facilitated avoidance and extinction resistance along with malfunction of the dopamine (DA) system. Sprague Dawley (SD) and WKY rats were trained to acquire lever-press avoidance. WKY rats acquired avoidance faster and to a higher level compared to SD rats. During pharmacological treatment, bupropion and desipramine (DES) significantly reduced avoidance response selectively in WKY rats. However, after the discontinuation of drug treatment, only those WKY rats that were previously treated with DES exhibited lower avoidance response compared to the control group. In contrast, none of the psychotropic drugs facilitated avoidance extinction in SD rats. Instead, DES impaired avoidance extinction and increased non-reinforced response in SD rats. Interestingly, paroxetine, a widely used antidepressant and anxiolytic, exhibited the weakest effect in WKY rats and no effects at all in SD rats. Thus, our data suggest that malfunctions in brain catecholamine system could be one of the underlying etiologies of anxiety-like behavior, particularly avoidance perseveration. Furthermore, pharmacological manipulation targeting DA and norepinephrine may be more effective to facilitate extinction learning in this strain. The data from the present study may shed light on new pharmacological approaches to treat patients with anxiety disorders who are not responding to serotonin re-uptake inhibitors.

19.
Front Behav Neurosci ; 8: 283, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25183956

RESUMO

Avoidance behaviors, in which a learned response causes omission of an upcoming punisher, are a core feature of many psychiatric disorders. While reinforcement learning (RL) models have been widely used to study the development of appetitive behaviors, less attention has been paid to avoidance. Here, we present a RL model of lever-press avoidance learning in Sprague-Dawley (SD) rats and in the inbred Wistar Kyoto (WKY) rat, which has been proposed as a model of anxiety vulnerability. We focus on "warm-up," transiently decreased avoidance responding at the start of a testing session, which is shown by SD but not WKY rats. We first show that a RL model can correctly simulate key aspects of acquisition, extinction, and warm-up in SD rats; we then show that WKY behavior can be simulated by altering three model parameters, which respectively govern the tendency to explore new behaviors vs. exploit previously reinforced ones, the tendency to repeat previous behaviors regardless of reinforcement, and the learning rate for predicting future outcomes. This suggests that several, dissociable mechanisms may contribute independently to strain differences in behavior. The model predicts that, if the "standard" inter-session interval is shortened from 48 to 24 h, SD rats (but not WKY) will continue to show warm-up; we confirm this prediction in an empirical study with SD and WKY rats. The model further predicts that SD rats will continue to show warm-up with inter-session intervals as short as a few minutes, while WKY rats will not show warm-up, even with inter-session intervals as long as a month. Together, the modeling and empirical data indicate that strain differences in warm-up are qualitative rather than just the result of differential sensitivity to task variables. Understanding the mechanisms that govern expression of warm-up behavior in avoidance may lead to better understanding of pathological avoidance, and potential pathways to modify these processes.

20.
Int J Oncol ; 42(4): 1427-36, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23403885

RESUMO

Silencing of tumor suppressor genes plays a vital role in head and neck carcinogenesis. Aberrant hypermethylation in the promoter region of some known or putative tumor suppressor genes occurs frequently during the development of various types of cancer including head and neck squamous cell carcinoma (HNSCC). In this study we used an expanded mRNA expression profiling approach followed by microarray expression analysis to identify epigenetically inactivated genes in HNSCC. Two HNSCC cell lines were treated with 5-aza-2'-deoxycytidine followed by microarray analysis to identify epigenetically silenced genes in HNSCC. We found 1,960, 614 and 427 genes were upregulated in the HNSCC cell lines JHU-012, JHU-011 and the combination of both cell lines, respectively. HNSCC tumor and normal mucosal samples were used for gene profiling by a 47K mRNA gene expression array and we found 7,140 genes were downregulated in HNSCC tumors compared to normal mucosa, as determined by microarray analysis, and were integrated with cell line data. Integrative analysis defined 126 candidate genes, of which only seven genes showed differential methylation in tumors and no methylation in normal mucosa after bisulfite sequencing. Following validation by QMSP, one gene, guanine nucleotide-binding protein γ-7 (GNG7), was confirmed to be highly methylated in tumors and unmethylated in normal mucosal and salivary rinse samples demonstrating cancer-specific methylation in HNSCC tissues. TXNIP and TUSC2 were partially methylated in tumors and normal salivary rinses but unmethylated in normal mucosa. We concluded that GNG7 is a highly specific promoter methylated gene associated with HNSCC. In addition, TXNIP and TUSC2 are also potential biomarkers for HNSCC.


Assuntos
Carcinoma de Células Escamosas/genética , Subunidades gama da Proteína de Ligação ao GTP/genética , Inativação Gênica , Neoplasias de Cabeça e Pescoço/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Estudos de Casos e Controles , Linhagem Celular Tumoral , Metilação de DNA , Feminino , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Perfilação da Expressão Gênica , Neoplasias de Cabeça e Pescoço/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos , Regiões Promotoras Genéticas , Análise de Sequência de DNA , Transcriptoma , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA