Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
MAbs ; 11(8): 1358-1366, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31500514

RESUMO

Reversed-phase liquid chromatography (RPLC) separations of proteins using optical detection generally use trifluoroacetic acid (TFA) because it is a strong, hydrophobic acid and a very effective ion-pairing agent for minimizing chromatographic secondary interactions. Conversely and in order to avoid ion suppression, analyses entailing mass spectrometry (MS) detection is often performed with a weaker ion-pairing modifier, like formic acid (FA), but resolution quality may be reduced. To gain both the chromatographic advantages of TFA and the enhanced MS sensitivity of FA, we explored the use of an alternative acid, difluoroacetic acid (DFA). This acid modifier is less acidic and less hydrophobic than TFA and is believed to advantageously affect the surface tension of electrospray droplets. Thus, it is possible to increase MS sensitivity threefold by replacing TFA with DFA. Moreover, we have observed DFA ion pairing to concomitantly produce higher chromatographic resolution than FA and even TFA. For this reason, we prepared and used MS-quality DFA in place of FA and TFA in separations involving IdeS digested, reduced NIST mAb and a proprietary antibody-drug conjugate (ADC), aiming to increase sensitivity, resolution and protein recovery. The resulting method using DFA was qualified and applied to two other ADCs and gave heightened sensitivity, resolution and protein recovery versus analyses using TFA. This new method, based on a purified, trace metal free DFA, can potentially become a state-of-the-art liquid chromatography-MS technique for the deep characterization of ADCs.


Assuntos
Anticorpos Monoclonais/química , Imunoconjugados/química , Espectrometria de Massas em Tandem , Cromatografia de Fase Reversa , Interações Hidrofóbicas e Hidrofílicas
2.
MAbs ; 10(3): 335-345, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29393747

RESUMO

Antibody-drug conjugation strategies are continuously evolving as researchers work to improve the safety and efficacy of the molecules. However, as a part of process and product development, confirmation of the resulting innovative structures requires new, specialized mass spectrometry (MS) approaches and methods, as compared to those already established for antibody-drug conjugates (ADCs) and the heightened characterization practices used for monoclonal antibodies (mAbs), in order to accurately elucidate the resulting conjugate forms, which can sometimes have labile chemical bonds and more extreme chemical properties like hydrophobic patches. Here, we discuss practical approaches for characterization of ADCs using new methodologies and ultrahigh-resolution MS, and provide specific examples of these approaches. Denaturing conditions of typical liquid chromatography (LC)/MS analyses impede the successful detection of intact, 4-chain ADCs generated via cysteine site-directed chemistry approaches where hinge region disulfide bonds are partially reduced. However, this class of ADCs is detected intact reliably under non-denaturing size-exclusion chromatography/MS conditions, also referred to as native MS. For ADCs with acid labile linkers such as one used for conjugation of calicheamicin, careful selection of mobile phase composition is critical to the retention of intact linker-payload during LC/MS analysis. Increasing the pH of the mobile phase prevented cleavage of a labile bond in the linker moiety, and resulted in retention of the intact linker-payload. In-source fragmentation also was observed with typical electrospray ionization (ESI) source parameters during intact ADC mass analysis for a particular surface-accessible linker-payload moiety conjugated to the heavy chain C-terminal tag, LLQGA (via transglutaminase chemistry). Optimization of additional ESI source parameters such as cone voltages, gas pressures and ion transfer parameters led to minimal fragmentation and optimal sensitivity. Ultrahigh-resolution (UHR) MS, combined with reversed phase-ultrahigh performance (RP-UHP)LC and use of the FabRICATOR® enzyme, provides a highly resolving, antibody subunit-domain mapping method that allows rapid confirmation of integrity and the extent of conjugation. For some ADCs, the hydrophobic nature of the linker-payload hinders chromatographic separation of the modified subunit/domains or causes very late elution/poor recovery. As an alternative to the traditionally used C4 UHPLC column chemistry, a diphenyl column resulted in the complete recovery of modified subunit/domains. For ADCs based on maleimide chemistry, control of pH during proteolytic digestion is critical to minimize ring-opening. The optimum pH to balance digestion efficiency and one that does not cause ring opening needed to be established for successful peptide mapping.


Assuntos
Anticorpos Monoclonais , Imunoconjugados , Espectrometria de Massas/métodos , Animais , Anticorpos Monoclonais/análise , Anticorpos Monoclonais/química , Cromatografia Líquida/métodos , Humanos , Imunoconjugados/análise , Imunoconjugados/química
3.
Bioconjug Chem ; 27(3): 604-15, 2016 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-26829368

RESUMO

The impact of drug loading and distribution on higher order structure and physical stability of an interchain cysteine-based antibody drug conjugate (ADC) has been studied. An IgG1 mAb was conjugated with a cytotoxic auristatin payload following the reduction of interchain disulfides. The 2-D LC-MS analysis shows that there is a preference for certain isomers within the various drug to antibody ratios (DARs). The physical stability of the unconjugated monoclonal antibody, the ADC, and isolated conjugated species with specific DAR, were compared using calorimetric, thermal, chemical denaturation and molecular modeling techniques, as well as techniques to assess hydrophobicity. The DAR was determined to have a significant impact on the biophysical properties and stability of the ADC. The CH2 domain was significantly perturbed in the DAR6 species, which was attributable to quaternary structural changes as assessed by molecular modeling. At accelerated storage temperatures, the DAR6 rapidly forms higher molecular mass species, whereas the DAR2 and the unconjugated mAb were largely stable. Chemical denaturation study indicates that DAR6 may form multimers while DAR2 and DAR4 primarily exist in monomeric forms in solution at ambient conditions. The physical state differences were correlated with a dramatic increase in the hydrophobicity and a reduction in the surface tension of the DAR6 compared to lower DAR species. Molecular modeling of the various DAR species and their conformers demonstrates that the auristatin-based linker payload directly contributes to the hydrophobicity of the ADC molecule. Higher order structural characterization provides insight into the impact of conjugation on the conformational and colloidal factors that determine the physical stability of cysteine-based ADCs, with implications for process and formulation development.


Assuntos
Cisteína/química , Imunoconjugados/química , Preparações Farmacêuticas/administração & dosagem , Varredura Diferencial de Calorimetria , Cromatografia Líquida , Espectrometria de Massas , Estrutura Molecular , Espectrometria de Fluorescência
4.
J Chromatogr A ; 1410: 147-53, 2015 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-26256919

RESUMO

Reversed-phase chromatography is an established method for characterizing the disulfide isoforms of IgG2. This work explores the effect of mobile phase gradient profile and sample concentration on the separation of disulfide isoforms. The acidic mobile phase can alter the relative proportions of disulfide isoforms, but only when the level of the reactive A1 isoform is much higher than for typical conditions of separation and typical IgG2 samples. Otherwise, there is minimal disulfide scrambling. A slower gradient and flow rate modestly improve resolution, but the peaks remain heavily overlapped. Resolution is further improved and nonlinear chromatography lessened when injection is performed under non-stacking conditions. Non-stacking conditions also keep the concentration from spiking at the head of the column, reducing noncovalent associations that can promote disulfide scrambling. The higher resolution from non-stacking injection reveals the presence of at least seven species.


Assuntos
Anticorpos Monoclonais/química , Dissulfetos/química , Imunoglobulina G/química , Cromatografia de Fase Reversa , Isoformas de Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA