Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 95(17): 6980-6988, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37070980

RESUMO

The mammalian brain contains ∼20,000 distinct lipid species that contribute to its structural organization and function. The lipid profiles of cells change in response to a variety of cellular signals and environmental conditions that result in modulation of cell function through alteration of phenotype. The limited sample material combined with the vast chemical diversity of lipids makes comprehensive lipid profiling of individual cells challenging. Here, we leverage the resolving power of a 21 T Fourier-transform ion cyclotron resonance (FTICR) mass spectrometer for chemical characterization of individual hippocampal cells at ultrahigh mass resolution. The accuracy of the acquired data allowed differentiation of freshly isolated and cultured hippocampal cell populations, as well as finding differences in lipids between the soma and neuronal processes of the same cell. Differences in lipids include TG 42:2 observed solely in the cell bodies and SM 34:1;O2 found only in the cellular processes. The work represents the first mammalian single cells analyzed at ultrahigh resolution and is an advance in the performance of mass spectrometry (MS) for single-cell research.


Assuntos
Ciclotrons , Lipídeos , Animais , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Análise de Fourier , Mamíferos
2.
Anal Bioanal Chem ; 414(22): 6657-6670, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35881173

RESUMO

Diabetic nephropathy (DN) is the leading cause of end-stage renal disease. Limitations in current diagnosis and screening methods have sparked a search for more specific and conclusive biomarkers. Hyperglycemic conditions generate a plethora of harmful molecules in circulation and within tissues. Oxidative stress generates reactive α-dicarbonyls and ß-unsaturated hydroxyhexenals, which react with proteins to form advanced glycation end products. Mass spectrometry imaging (MSI) enables the detection and spatial localization of molecules in biological tissue sections. Here, for the first time, the localization and semiquantitative analysis of "reactive aldehydes" (RAs) 4-hydroxyhexenal (4-HHE), 4-hydroxynonenal (4-HNE), and 4-oxo-2-nonenal (4-ONE) in the kidney tissues of a diabetic mouse model is presented. Ionization efficiency was enhanced through on-tissue chemical derivatization (OTCD) using Girard's reagent T (GT), forming positively charged hydrazone derivatives. MSI analysis was performed using matrix-assisted laser desorption ionization (MALDI) coupled with Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR). RA levels were elevated in diabetic kidney tissues compared to lean controls and localized throughout the kidney sections at a spatial resolution of 100 µm. This was confirmed by liquid extraction surface analysis-MSI (LESA-MSI) and liquid chromatography-mass spectrometry (LC-MS). This method identified ß-unsaturated aldehydes as "potential" biomarkers of DN and demonstrated the capability of OTCD-MSI for detection and localization of poorly ionizable molecules by adapting existing chemical derivatization methods. Untargeted exploratory distribution analysis of some precursor lipids was also assessed using MALDI-FT-ICR-MSI.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Aldeídos , Animais , Biomarcadores , Camundongos , Camundongos Endogâmicos ICR , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
3.
Mass Spectrom Rev ; 41(5): 662-694, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-33433028

RESUMO

Mass spectrometry imaging (MSI) combines molecular and spatial information in a valuable tool for a wide range of applications. Matrix-assisted laser desorption/ionization (MALDI) is at the forefront of MSI ionization due to its wide availability and increasing improvement in spatial resolution and analysis speed. However, ionization suppression, low concentrations, and endogenous and methodological interferences cause visualization problems for certain molecules. Chemical derivatization (CD) has proven a viable solution to these issues when applied in mass spectrometry platforms. Chemical tagging of target analytes with larger, precharged moieties aids ionization efficiency and removes analytes from areas of potential isobaric interferences. Here, we address the application of CD on tissue samples for MSI analysis, termed on-tissue chemical derivatization (OTCD). MALDI MSI will remain the focus platform due to its popularity, however, alternative ionization techniques such as liquid extraction surface analysis and desorption electrospray ionization will also be recognized. OTCD reagent selection, application, and optimization methods will be discussed in detail. MSI with OTCD is a powerful tool to study the spatial distribution of poorly ionizable molecules within tissues. Most importantly, the use of OTCD-MSI facilitates the analysis of previously inaccessible biologically relevant molecules through the adaptation of existing CD methods. Though further experimental optimization steps are necessary, the benefits of this technique are extensive.


Assuntos
Processamento de Imagem Assistida por Computador , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
4.
RSC Adv ; 11(54): 33916-33925, 2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-35497310

RESUMO

Prostate cancer is initially treated via androgen deprivation therapy (ADT), a highly successful treatment in the initial pursuit of tumour regression, but commonly restricted by the eventual emergence of a more lethal 'castrate resistant' (CRPC) form of the disease. Intracrine pathways that utilize dehydroepiandrosterone (DHEA) or other circulatory precursor steroids are thought to generate relevant levels of growth-stimulating androgens such as testosterone (T) and dihydrotestosterone (DHT). Decoding this tissue-specific metabolic pathway is key for the development of novel therapeutic treatments. Mass spectrometry imaging (MSI) is an analytical technique that allows the visualization of the distribution of numerous classes of biomolecules within tissue sections. The analysis of androgens by liquid chromatography mass spectrometry (LC/MS)-based methods however presents a challenge due to their generally poor ionization efficiency and low physiological endogenous levels. In MSI, on-tissue chemical derivatization (OTCD) has enabled the limits of steroids to be imaged within tissues to be pushed by overcoming poor ionization performance. However, isobaric interference of key androgen derivatives such as T and DHEA can severely hamper studying the intracrinology in several diseases. Here, we have evaluated the use of laser induced post-ionization (MALDI-2) combined with trapped ion mobility separation (TIMS) and orthogonal time-of-flight (QTOF) MS for the visualization of isobaric derivatized androgens in murine tumour xenograft at about 50 µm spatial resolution. With this combination, isobaric T and DHEA were separated in tissue sections and the signals of derivatized steroids enhanced by about 20 times. The combination of TIMS and MALDI-2 thus shows unique potential to study tissue intracrinology within target tissues. This could offer the opportunity for many novel insights into tissue-specific androgen biology.

5.
ACS Omega ; 5(22): 13430-13437, 2020 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-32548531

RESUMO

Vitamin D plays a key role in the maintenance of calcium/phosphate homeostasis and elicits biological effects that are relevant to immune function and metabolism. It is predominantly formed through UV exposure in the skin by conversion of 7-dehydrocholsterol (vitamin D3). The clinical biomarker, 25-hydroxyvitamin D (25-(OH)-D), is enzymatically generated in the liver with the active hormone 1,25-dihydroxyvitamin D then formed under classical endocrine control in the kidney. Vitamin D metabolites are measured in biomatrices by liquid chromatography-tandem mass spectrometry (LC-MS/MS). In LC-MS/MS, chemical derivatization (CD) approaches have been employed to achieve the desired limit of quantitation. Recently, matrix-assisted laser desorption/ionization (MALDI) has also been reported as an alternative method. However, these quantitative approaches do not offer any spatial information. Mass spectrometry imaging (MSI) has been proven to be a powerful tool to image the spatial distribution of molecules from the surface of biological tissue sections. On-tissue chemical derivatization (OTCD) enables MSI to image molecules with poor ionization efficiently. In this technical report, several derivatization reagents and OTCD methods were evaluated using different MSI ionization techniques. Here, a method for detection and spatial distribution of vitamin D metabolites in murine kidney tissue sections using an OTCD-MALDI-MSI platform is presented. Moreover, the suitability of using the Bruker ImagePrep for OTCD-based platforms has been demonstrated. Importantly, this method opens the door for expanding the range of other poor ionizable molecules that can be studied by OTCD-MSI by adapting existing CD methods.

6.
Biochem Biophys Res Commun ; 519(3): 579-584, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31537382

RESUMO

Prostate cancer is initially treated via androgen deprivation therapy (ADT), a highly successful treatment in the initial pursuit of tumor regression, but commonly restricted by the eventual emergence of a more lethal 'castrate resistant' form of the disease. Intracrine pathways that utilize dehydroepiandrosterone (DHEA) or other circulatory precursor steroids, are thought to generate relevant levels of growth-stimulating androgens such as testosterone (T) and dihydrotestosterone (DHT). In this study, we explored the capacity of the active vitamin D hormone to interact and elicit changes upon this prostatic intracrine pathway at a metabolic level. We used androgen dependent LNCaP cells cultured under steroid-depleted conditions and assessed the impact of vitamin D-based compounds upon intracrine pathways that convert exogenously added DHEA to relevant metabolites, through Mass Spectrometry (MS). Changes in relevant metabolism-related gene targets were also assessed. Our findings confirm that exposure to vitamin D based compounds, within LNCaP cells, elicits measurable and significant reduction in the intracrine conversion of DHEA to T, DHT and other intermediate metabolites within the androgenic pathway. The aassessment and validation of the biological model and analytical platforms were performed by pharmacological manipulations of the SRD5α and HSD-17ß enzymes. The data provides further confirmation for how a vitamin D-based regime may be used to counter intracrine mechanisms contributing to the emergence of castrate-resistant tumors.


Assuntos
Antagonistas de Androgênios/farmacologia , Androgênios/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Vitamina D/farmacologia , Humanos , Ligantes , Masculino , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA