Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 13(45): 10500-10506, 2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36332112

RESUMO

The mechanism underlying magnetoreception has long eluded explanation. A popular hypothesis attributes this sense to the quantum coherent spin dynamics and spin-selective recombination reactions of radical pairs in the protein cryptochrome. However, concerns about the validity of the hypothesis have been raised because unavoidable inter-radical interactions, such as the strong electron-electron dipolar coupling, appear to suppress its sensitivity. We demonstrate that sensitivity can be restored by driving the spin system through a modulation of the inter-radical distance. It is shown that this dynamical process markedly enhances geomagnetic field sensitivity in strongly coupled radical pairs via Landau-Zener-Stückelberg-Majorana transitions between singlet and triplet states. These findings suggest that a "live" harmonically driven magnetoreceptor can be more sensitive than its "dead" static counterpart.


Assuntos
Criptocromos , Campos Magnéticos , Criptocromos/metabolismo , Movimento (Física) , Elétrons
2.
Sci Rep ; 12(1): 6011, 2022 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-35397661

RESUMO

It is hypothesised that the avian compass relies on spin dynamics in a recombining radical pair. Quantum coherence has been suggested as a resource to this process that nature may utilise to achieve increased compass sensitivity. To date, the true functional role of coherence in these natural systems has remained speculative, lacking insights from sufficiently complex models. Here, we investigate realistically large radical pair models with up to 21 nuclear spins, inspired by the putative magnetosensory protein cryptochrome. By varying relative radical orientations, we reveal correlations of several coherence measures with compass fidelity. Whilst electronic coherence is found to be an ineffective predictor of compass sensitivity, a robust correlation of compass sensitivity and a global coherence measure is established. The results demonstrate the importance of realistic models, and appropriate choice of coherence measure, in elucidating the quantum nature of the avian compass.


Assuntos
Migração Animal , Campos Magnéticos , Animais , Aves/metabolismo , Criptocromos/metabolismo , Orientação
3.
J Chem Phys ; 151(16): 164109, 2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31675870

RESUMO

Current simulations of ultraviolet-visible absorption lineshapes and dynamics of condensed phase systems largely adopt a harmonic description to model vibrations. Often, this involves a model of displaced harmonic oscillators that have the same curvature. Although convenient, for many realistic molecular systems, this approximation no longer suffices. We elucidate nonstandard harmonic and anharmonic effects on linear absorption and dynamics using a stochastic Schrödinger equation approach to account for the environment. First, a harmonic oscillator model with ground and excited potentials that differ in curvature is utilized. Using this model, it is shown that curvature difference gives rise to an additional substructure in the vibronic progression of absorption spectra. This effect is explained and subsequently quantified via a derived expression for the Franck-Condon coefficients. Subsequently, anharmonic features in dissipative systems are studied, using a Morse potential and parameters that correspond to the diatomic molecule H2 for differing displacements and environment interaction. Finally, using a model potential, the population dynamics and absorption spectra for the stiff-stilbene photoswitch are presented and features are explained by a combination of curvature difference and anharmonicity in the form of potential energy barriers on the excited potential.

5.
J Phys Chem Lett ; 8(10): 2328-2333, 2017 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-28475337

RESUMO

We study a large number of physically-plausible arrangements of chromophores, generated via a computational method involving stochastic real-space transformations of a naturally-occurring "reference" structure, illustrating our methodology using the well-studied Fenna-Matthews-Olson complex (FMO). To explore the idea that the natural structure has been tuned for efficient energy transport, we use an atomic transition charge method to calculate the excitonic couplings of each generated structure and a Lindblad master equation to study the quantum transport of an exciton from a "source" to a "drain" chromophore. We find significant correlations between structure and transport efficiency: High-performing structures tend to be more compact and, among those, the best structures display a certain orientation of the chromophores, particularly the chromophore closest to the source-to-drain vector. We conclude that, subject to reasonable, physically motivated constraints, the FMO complex is highly attuned to the purpose of energy transport, partly by exploiting these structural motifs.

6.
Science ; 340(6128): 69-71, 2013 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-23559247

RESUMO

Coral reef recovery from major disturbance is hypothesized to depend on the arrival of propagules from nearby undisturbed reefs. Therefore, reefs isolated by distance or current patterns are thought to be highly vulnerable to catastrophic disturbance. We found that on an isolated reef system in north Western Australia, coral cover increased from 9% to 44% within 12 years of a coral bleaching event, despite a 94% reduction in larval supply for 6 years after the bleaching. The initial increase in coral cover was the result of high rates of growth and survival of remnant colonies, followed by a rapid increase in juvenile recruitment as colonies matured. We show that isolated reefs can recover from major disturbance, and that the benefits of their isolation from chronic anthropogenic pressures can outweigh the costs of limited connectivity.


Assuntos
Antozoários/crescimento & desenvolvimento , Recifes de Corais , Animais , Conservação dos Recursos Naturais , Reprodução , Temperatura , Austrália Ocidental
7.
PLoS One ; 7(5): e37795, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22662225

RESUMO

Understanding the sedimentation and turbidity thresholds for corals is critical in assessing the potential impacts of dredging projects in tropical marine systems. In this study, we exposed two species of coral sampled from offshore locations to six levels of total suspended solids (TSS) for 16 weeks in the laboratory, including a 4 week recovery period. Dose-response relationships were developed to quantify the lethal and sub-lethal thresholds of sedimentation and turbidity for the corals. The sediment treatments affected the horizontal foliaceous species (Montipora aequituberculata) more than the upright branching species (Acropora millepora). The lowest sediment treatments that caused full colony mortality were 30 mg l(-1) TSS (25 mg cm(-2) day(-1)) for M. aequituberculata and 100 mg l(-1) TSS (83 mg cm(-2) day(-1)) for A. millepora after 12 weeks. Coral mortality generally took longer than 4 weeks and was closely related to sediment accumulation on the surface of the corals. While measurements of damage to photosystem II in the symbionts and reductions in lipid content and growth indicated sub-lethal responses in surviving corals, the most reliable predictor of coral mortality in this experiment was long-term sediment accumulation on coral tissue.


Assuntos
Antozoários/crescimento & desenvolvimento , Sedimentos Geológicos , Animais
8.
Ecol Appl ; 19(1): 18-29, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19323171

RESUMO

Coral reefs are in decline worldwide, and marine reserve networks have been advocated as a powerful management tool for maximizing the resilience of coral communities to an increasing variety, number, and severity of disturbances. However, the effective design of reserves must account for the spatial scales of larval dispersal that affect the demography of communities over ecological time frames. Ecologically relevant distances of dispersal were inferred from DNA microsatellite data in a broadcast-spawning (Acropora tenuis) and a brooding (Seriatopora hystrix) coral at isolated reef systems off northwest Australia. Congruent with expectations based on life histories, levels of genetic subdivision among populations were markedly higher in the brooder than in the broadcast spawner. Additionally, significant subdivision for both species between systems (>100 km), and between (>10 km) or within reefs (<10 km) within systems, indicated that many reefs or reef patches are demographically independent. There was also a clear distinction in the scale of genetic structure between the different systems; at the more geographically complex of the systems, a much finer scale structure was detected in both species. This suggested that the hydrodynamics associated with these complex reefs restrict distances regularly traveled by larvae. The primary implication is that short-term recovery of these coral communities after severe disturbance requires the input of larvae from viable communities kilometers to a few tens of kilometers away. Therefore, to be self-sustaining, we suggest that coral reef protected areas need to be large enough to encompass these routine dispersal distances. Further, to facilitate recovery from severe disturbances, protected areas need to be replicated over these spatial scales. However, specific designs also need to account for size, complexity, and isolation of reefs, which will either restrict or enhance dispersal within this range.


Assuntos
Adaptação Fisiológica , Antozoários/fisiologia , Ecossistema , Animais , Antozoários/genética , Demografia , Variação Genética , Genótipo , Reprodução/fisiologia
9.
Appl Environ Microbiol ; 70(2): 1213-21, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14766608

RESUMO

Microorganisms have been reported to induce settlement and metamorphosis in a wide range of marine invertebrate species. However, the primary cue reported for metamorphosis of coral larvae is calcareous coralline algae (CCA). Herein we report the community structure of developing coral reef biofilms and the potential role they play in triggering the metamorphosis of a scleractinian coral. Two-week-old biofilms induced metamorphosis in less than 10% of larvae, whereas metamorphosis increased significantly on older biofilms, with a maximum of 41% occurring on 8-week-old microbial films. There was a significant influence of depth in 4- and 8-week biofilms, with greater levels of metamorphosis occurring in response to shallow-water communities. Importantly, larvae were found to settle and metamorphose in response to microbial biofilms lacking CCA from both shallow and deep treatments, indicating that microorganisms not associated with CCA may play a significant role in coral metamorphosis. A polyphasic approach consisting of scanning electron microscopy, fluorescence in situ hybridization (FISH), and denaturing gradient gel electrophoresis (DGGE) revealed that coral reef biofilms were comprised of complex bacterial and microalgal communities which were distinct at each depth and time. Principal-component analysis of FISH data showed that the Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, and Cytophaga-Flavobacterium of Bacteroidetes had the largest influence on overall community composition. A low abundance of Archaea was detected in almost all biofilms, providing the first report of Archaea associated with coral reef biofilms. No differences in the relative densities of each subdivision of Proteobacteria were observed between slides that induced larval metamorphosis and those that did not. Comparative cluster analysis of bacterial DGGE patterns also revealed that there were clear age and depth distinctions in biofilm community structure; however, no difference was detected in banding profiles between biofilms which induced larval metamorphosis and those where no metamorphosis occurred. This investigation demonstrates that complex microbial communities can induce coral metamorphosis in the absence of CCA.


Assuntos
Antozoários/microbiologia , Antozoários/fisiologia , Biofilmes/crescimento & desenvolvimento , Ecossistema , Metamorfose Biológica , Animais , Archaea/crescimento & desenvolvimento , Bactérias/crescimento & desenvolvimento , Análise por Conglomerados , Cytophaga/crescimento & desenvolvimento , Eletroforese/métodos , Eucariotos/crescimento & desenvolvimento , Flavobacterium/crescimento & desenvolvimento , Hibridização in Situ Fluorescente , Larva/microbiologia , Larva/fisiologia , Microscopia Eletrônica de Varredura , Proteobactérias/crescimento & desenvolvimento
10.
Mar Pollut Bull ; 44(2): 111-7, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11981977

RESUMO

The 184 m cargo ship Bunga Teratai Satu collided with Sudbury Reef, part of the Great Barrier Reef and remained grounded for 12 days. The ship was re-floated only 3 days prior to the November 2000 mass coral spawning. No cargo or fuel was lost but the impact resulted in significant contamination of the reef with anti-foulant paint containing tributyltin (TBT), copper (Cu) and zinc (Zn). Larvae of the reef-building scleractinian coral Acropora microphthalma were exposed to various concentrations of sediment collected from the grounding site in replicated laboratory experiments. Two experiments were performed, both of which used varying ratios of contaminated and control site sediment in seawater as treatments. In the first experiment, the influence of contaminated sediment on larval competency was examined using metamorphosis bioassays. In the second, the effect of contaminated sediment upon larval recruitment on pre-conditioned terracotta tiles was assessed. In both experiments, sediment containing 8.0 mg kg(-1) TBT, 72 mg kg(-1) Cu and 92 mg kg(-1) Zn significantly inhibited larval settlement and metamorphosis. At this level of contamination larvae survived but contracted to a spherical shape and swimming and searching behaviour ceased. At higher contamination levels, 100% mortality was recorded. These results indicate that the contamination of sediment by anti-fouling paint at Sudbury Reef has the potential to significantly reduce coral recruitment in the immediate vicinity of the site and that this contamination may threaten the recovery of the resident coral community unless the paint is removed.


Assuntos
Cnidários , Cobre/efeitos adversos , Pintura , Navios , Compostos de Trialquitina/efeitos adversos , Zinco/efeitos adversos , Animais , Meio Ambiente , Sedimentos Geológicos/química , Larva/crescimento & desenvolvimento , Metamorfose Biológica , Controle de Pragas , Dinâmica Populacional , Análise de Sobrevida , Testes de Toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA