Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
eNeuro ; 4(1)2017.
Artigo em Inglês | MEDLINE | ID: mdl-28144621

RESUMO

Kisspeptin (Kiss1) neurons in the hypothalamic arcuate nucleus (ARC) are key components of the hypothalamic-pituitary-gonadal axis, as they regulate the basal pulsatile release of gonadotropin releasing hormone (GnRH). ARC Kiss1 action is dependent on energy status, and unmasking metabolic factors responsible for modulating ARC Kiss1 neurons is of great importance. One possible factor is glucagon-like peptide 1 (GLP-1), an anorexigenic neuropeptide produced by brainstem preproglucagon neurons. Because GLP fiber projections and the GLP-1 receptor (GLP-1R) are abundant in the ARC, we hypothesized that GLP-1R signaling could modulate ARC Kiss1 action. Using ovariectomized mice, we found that GLP-producing fibers come in close apposition with ARC Kiss1 neurons; these neurons also contain Glp1r mRNA. Electrophysiological recordings revealed that liraglutide (a long-acting GLP-1R agonist) increased action potential firing and caused a direct membrane depolarization of ARC Kiss1 cells in brain slices. We determined that brainstem preproglucagon mRNA is decreased after a 48-h fast in mice, a negative energy state in which ARC Kiss1 expression and downstream GnRH/luteinizing hormone (LH) release are potently suppressed. However, activation of GLP-1R signaling in fasted mice with liraglutide was not sufficient to prevent LH inhibition. Furthermore, chronic central infusions of the GLP-1R antagonist, exendin(9-39), in ad libitum-fed mice did not alter ARC Kiss1 mRNA or plasma LH. As a whole, these data identify a novel interaction of the GLP-1 system with ARC Kiss1 neurons but indicate that CNS GLP-1R signaling alone is not critical for the maintenance of LH during fasting or normal feeding.


Assuntos
Núcleo Arqueado do Hipotálamo/metabolismo , Jejum/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Kisspeptinas/metabolismo , Hormônio Luteinizante/sangue , Neurônios/metabolismo , Animais , Núcleo Arqueado do Hipotálamo/citologia , Núcleo Arqueado do Hipotálamo/efeitos dos fármacos , Tronco Encefálico/citologia , Tronco Encefálico/efeitos dos fármacos , Tronco Encefálico/metabolismo , Implantes de Medicamento , Ingestão de Alimentos/fisiologia , Estradiol/administração & dosagem , Estrogênios/administração & dosagem , Feminino , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/antagonistas & inibidores , Peptídeos Semelhantes ao Glucagon/metabolismo , Hormônio Luteinizante/antagonistas & inibidores , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Camundongos Endogâmicos C57BL , Neurônios/citologia , Neurônios/efeitos dos fármacos , Ovariectomia , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Técnicas de Cultura de Tecidos
2.
Obesity (Silver Spring) ; 23(11): 2157-64, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26530932

RESUMO

OBJECTIVE: To utilize a nonhuman primate model to examine the impact of maternal high-fat diet (HFD) consumption and pre-pregnancy obesity on offspring intake of palatable food and to examine whether maternal HFD consumption impaired development of the dopamine system, critical for the regulation of hedonic feeding. METHODS: The impact of exposure to maternal HFD and obesity on offspring consumption of diets of varying composition was assessed after weaning. The influence of maternal HFD consumption on the development of the prefrontal cortex-dopaminergic system at 13 months of age was also examined. RESULTS: During a preference test, offspring exposed to maternal HFD consumption and obesity displayed increased intake of food high in fat and sugar content relative to offspring from lean control mothers. Maternal HFD consumption suppressed offspring dopamine signaling (as assessed by immunohistochemistry) relative to control offspring. Specifically, there was decreased abundance of dopamine fibers and of dopamine receptor 1 and 2 proteins. CONCLUSIONS: This study reveals that offspring exposed to both maternal HFD consumption and maternal obesity during early development are at increased risk for obesity due to overconsumption of palatable energy-dense food, a behavior that may be related to reduced central dopamine signaling.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Dopamina/metabolismo , Ingestão de Alimentos/fisiologia , Fenômenos Fisiológicos da Nutrição Materna , Obesidade/metabolismo , Complicações na Gravidez/metabolismo , Efeitos Tardios da Exposição Pré-Natal , Animais , Comportamento Alimentar/fisiologia , Feminino , Masculino , Modelos Animais , Obesidade/etiologia , Gravidez , Complicações na Gravidez/fisiopatologia , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Primatas , Transdução de Sinais , Paladar/fisiologia
3.
J Neurosci ; 35(22): 8558-69, 2015 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-26041922

RESUMO

Neurons coexpressing neuropeptide Y, agouti-related peptide, and GABA (NAG) play an important role in ingestive behavior and are located in the arcuate nucleus of the hypothalamus. NAG neurons receive both GABAergic and glutamatergic synaptic inputs, however, the developmental time course of synaptic input organization of NAG neurons in mice is unknown. In this study, we show that these neurons have low numbers of GABAergic synapses and that GABA is inhibitory to NAG neurons during early postnatal period. In contrast, glutamatergic inputs onto NAG neurons are relatively abundant by P13 and are comparatively similar to the levels observed in the adult. As mice reach adulthood (9-10 weeks), GABAergic tone onto NAG neurons increases. At this age, NAG neurons received similar numbers of inhibitory and EPSCs. To further differentiate age-associated changes in synaptic distribution, 17- to 18-week-old lean and diet-induced obesity (DIO) mice were studied. Surprisingly, NAG neurons from lean adult mice exhibit a reduction in the GABAergic synapses compared with younger adults. Conversely, DIO mice display reductions in the number of GABAergic and glutamatergic inputs onto NAG neurons. Based on these experiments, we propose that synaptic distribution in NAG neurons is continuously restructuring throughout development to accommodate the animals' energy requirements.


Assuntos
Núcleo Arqueado do Hipotálamo/citologia , Núcleo Arqueado do Hipotálamo/crescimento & desenvolvimento , Neurônios/fisiologia , Sinapses/fisiologia , 2-Amino-5-fosfonovalerato/farmacologia , 6-Ciano-7-nitroquinoxalina-2,3-diona/farmacologia , Fatores Etários , Animais , Animais Recém-Nascidos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/genética , Feminino , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Potenciais Pós-Sinápticos Inibidores/genética , Lisina/análogos & derivados , Lisina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neuropeptídeo Y/genética , Neuropeptídeo Y/metabolismo , Bloqueadores dos Canais de Sódio/farmacologia , Sinapses/efeitos dos fármacos , Sinapses/genética , Tetrodotoxina/farmacologia , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo , Ácido gama-Aminobutírico/farmacologia
4.
J Neurosci ; 34(30): 9982-94, 2014 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-25057200

RESUMO

Leptin is well known for its role in the regulation of energy homeostasis in adults, a mechanism that at least partially results from the inhibition of the activity of NPY/AgRP/GABA neurons (NAG) in the arcuate nucleus of the hypothalamus (ARH). During early postnatal development in the rodent, leptin promotes axonal outgrowth from ARH neurons, and preautonomic NAG neurons are particularly responsive to leptin's trophic effects. To begin to understand how leptin could simultaneously promote axonal outgrowth from and inhibit the activity of NAG neurons, we characterized the electrochemical effects of leptin on NAG neurons in mice during early development. Here, we show that NAG neurons do indeed express a functional leptin receptor throughout the early postnatal period in the mouse; however, at postnatal days 13-15, leptin causes membrane depolarization in NAG neurons, rather than the expected hyperpolarization. Leptin action on NAG neurons transitions from stimulatory to inhibitory in the periweaning period, in parallel with the acquisition of functional ATP-sensitive potassium channels. These findings are consistent with the idea that leptin provides an orexigenic drive through the NAG system to help rapidly growing pups meet their energy requirements.


Assuntos
Núcleo Arqueado do Hipotálamo/crescimento & desenvolvimento , Leptina/fisiologia , Neurônios/fisiologia , Receptores para Leptina/fisiologia , Transdução de Sinais/fisiologia , Animais , Animais Recém-Nascidos , Masculino , Camundongos , Camundongos Transgênicos , Receptores para Leptina/biossíntese
5.
Neuroendocrinology ; 99(3-4): 190-203, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25011649

RESUMO

BACKGROUND/AIMS: Kisspeptin is the major excitatory regulator of gonadotropin-releasing hormone (GnRH) neurons and is responsible for basal GnRH/LH release and the GnRH/LH surge. Although it is widely assumed, based on mutations in kisspeptin and Kiss1R, that kisspeptin acts to sustain basal GnRH neuronal activity, there have been no studies to investigate whether endogenous basal kisspeptin tone plays a direct role in basal spontaneous GnRH neuronal excitability. It is also of interest to examine possible interactions between endogenous kisspeptin tone and other neuropeptides that have direct effects on GnRH neurons, such as neuropeptide Y (NPY) or cocaine- and amphetamine-regulated transcript (CART), since the activity of all these neuropeptides changes during states of negative energy balance. METHODS: Loose cell-attached and whole-cell current patch-clamp recordings were made from GnRH-GFP neurons in hypothalamic slices from female and male rats. RESULTS: Kisspeptin activated GnRH neurons in a concentration-dependent manner with an EC50 of 3.32 ± 0.02 nM. Surprisingly, a kisspeptin antagonist, Peptide 347, suppressed spontaneous activity in GnRH neurons, demonstrating the essential nature of the endogenous kisspeptin tone. Furthermore, inhibition of endogenous kisspeptin tone blocked the direct activation of GnRH cells that occurs in response to antagonism of NPY Y5 receptor or by CART. CONCLUSIONS: Our electrophysiology studies suggest that basal endogenous kisspeptin tone is not only essential for spontaneous GnRH neuronal firing, but it is also required for the net excitatory effects of other neuropeptides, such as CART or NPY antagonism, on GnRH neurons. Therefore, endogenous kisspeptin tone could serve as the linchpin in GnRH activation or inhibition.


Assuntos
Hormônio Liberador de Gonadotropina/metabolismo , Hormônio Liberador de Gonadotropina/farmacologia , Kisspeptinas/metabolismo , Proteínas do Tecido Nervoso/farmacologia , Neurônios/efeitos dos fármacos , Neuropeptídeo Y/farmacologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/genética , Animais , Estradiol/farmacologia , Feminino , Hormônio Liberador de Gonadotropina/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Técnicas In Vitro , Kisspeptinas/antagonistas & inibidores , Kisspeptinas/farmacologia , Masculino , Neurônios/fisiologia , Ovariectomia , Técnicas de Patch-Clamp , Área Pré-Óptica/citologia , Ratos , Ratos Transgênicos , Ratos Wistar , Bloqueadores dos Canais de Sódio/farmacologia , Tetrodotoxina/farmacologia
6.
J Neurosci ; 33(38): 15306-17, 2013 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-24048859

RESUMO

Neuropeptide Y (NPY) neurons in both the arcuate nucleus of the hypothalamus (ARH) and the dorsomedial hypothalamus (DMH) have been implicated in food intake and obesity. However, while ARH NPY is highly expressed in the lean animal, DMH NPY mRNA expression is observed only after diet-induced obesity (DIO). Furthermore, while ARH NPY neurons are inhibited by leptin, the effect of this adipokine on DMH NPY neurons is unknown. In this study we show that in contrast to the consistent expression in the ARH, DMH NPY mRNA expression was undetectable until after 10 weeks in mice fed a high-fat diet, and peaked at 20 weeks. Surprisingly, electrophysiological experiments demonstrated that leptin directly depolarized and increased the firing rate of DMH NPY neurons in DIO mice. To further differentiate the regulation of DMH and ARH NPY populations, fasting decreased expression of DMH NPY expression, while it increased ARH NPY expression. However, treatment with a leptin receptor antagonist failed to alter DMH NPY expression, indicating that leptin may not be the critical factor regulating mRNA expression. Importantly, we also demonstrated that DMH NPY neurons coexpress cocaine amphetamine-regulated transcript (CART); however, CART mRNA expression in the DMH peaked earlier in the progression of DIO. This study demonstrates novel and important findings. First, NPY and CART are coexpressed in the same neurons within the DMH, and second, leptin stimulates DMH NPY neurons. These studies suggest that during the progression of DIO, there is an unknown signal that drives the expression of the orexigenic NPY signal within the DMH, and that the chronic hyperleptinemia increases the activity of these NPY/CART neurons.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Hipotálamo/efeitos dos fármacos , Leptina/farmacologia , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Neuropeptídeo Y/metabolismo , Obesidade/patologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/genética , Análise de Variância , Animais , Dieta/efeitos adversos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica/genética , Proteínas de Fluorescência Verde/genética , Hipotálamo/patologia , Técnicas In Vitro , Insulina/sangue , Leptina/antagonistas & inibidores , Leptina/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Neurônios/efeitos dos fármacos , Neuropeptídeo Y/genética , Obesidade/sangue , Obesidade/etiologia , Técnicas de Patch-Clamp , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , RNA Mensageiro/metabolismo , Radioimunoensaio , Fator de Transcrição STAT3/metabolismo , Fatores de Tempo
7.
Endocrinology ; 154(8): 2821-32, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23736294

RESUMO

Cocaine- and amphetamine-regulated transcript (CART) is a hypothalamic neuropeptide implicated in both metabolic and reproductive regulation, raising the possibility that CART plays a role in reproductive inhibition during negative metabolic conditions. The current study characterized CART's regulatory influence on GnRH and kisspeptin (Kiss1) cells and determined the sensitivity of different CART populations to negative energy balance. CART fibers made close appositions to 60% of GnRH cells, with the majority of the fibers (>80%) originating from the arcuate nucleus (ARH) CART/pro-opiomelanocortin population. Electrophysiological recordings in GnRH-green fluorescent protein rats demonstrated that CART postsynaptically depolarizes GnRH cells. CART fibers from the ARH were also observed in close contact with Kiss1 cells in the ARH and anteroventral periventricular nucleus (AVPV). Recordings in Kiss1-GFP mice demonstrated CART also postsynaptically depolarizes ARH Kiss1 cells, suggesting CART may act directly and indirectly, via Kiss1 populations, to stimulate GnRH neurons. CART protein and mRNA levels were analyzed in 2 models of negative energy balance: caloric restriction (CR) and lactation. Both CART mRNA levels and the number of CART-immunoreactive cells were suppressed in the ARH during CR but not during lactation. AVPV CART mRNA was suppressed during CR, but not during lactation when there was a dramatic increase in CART-immunoreactive cells. These data suggest differing regulatory signals of CART between the models. In conclusion, both morphological and electrophysiological methods identify CART as a novel and potent stimulator of Kiss1 and GnRH neurons and suppression of CART expression during negative metabolic conditions could contribute to inhibition of the reproductive axis.


Assuntos
Metabolismo Energético/fisiologia , Hormônio Liberador de Gonadotropina/metabolismo , Kisspeptinas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Reprodução/fisiologia , Animais , Animais Geneticamente Modificados , Núcleo Arqueado do Hipotálamo/citologia , Núcleo Arqueado do Hipotálamo/metabolismo , Núcleo Arqueado do Hipotálamo/fisiologia , Restrição Calórica , Feminino , Hormônio Liberador de Gonadotropina/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Imuno-Histoquímica , Hibridização In Situ , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Microscopia Confocal , Proteínas do Tecido Nervoso/genética , Neurônios/fisiologia , Ratos , Ratos Wistar , Potenciais Sinápticos/efeitos dos fármacos , Tetrodotoxina/farmacologia
8.
J Comp Neurol ; 521(8): 1891-914, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23172177

RESUMO

The dorsomedial hypothalamus (DMH) has long been implicated in feeding behavior and thermogenesis. The DMH contains orexigenic neuropeptide Y (NPY) neurons, but the role of these neurons in the control of energy homeostasis is not well understood. NPY expression in the DMH is low under normal conditions in adult rodents but is significantly increased during chronic hyperphagic conditions such as lactation and diet-induced obesity (DIO). To understand better the role of DMH-NPY neurons, we characterized the efferent projections of DMH-NPY neurons using the anterograde tracer biotinylated dextran amine (BDA) in lactating rats and DIO mice. In both models, BDA- and NPY-colabeled fibers were limited mainly to the hypothalamus, including the paraventricular nucleus of the hypothalamus (PVH), lateral hypothalamus/perifornical area (LH/PFA), and anteroventral periventricular nucleus (AVPV). Specifically in lactating rats, BDA-and NPY-colabeled axonal swellings were in close apposition to cocaine- and amphetamine-regulated transcript (CART)-expressing neurons in the PVH and AVPV. Although the DMH neurons project to the rostral raphe pallidus (rRPa), these projections did not contain NPY immunoreactivity in either the lactating rat or the DIO mouse. Instead, the majority of BDA-labeled fibers in the rRPa were orexin positive. Furthermore, DMH-NPY projections were not observed within the nucleus of the solitary tract (NTS), another brainstem site critical for the regulation of sympathetic outflow. The present data suggest that NPY expression in the DMH during chronic hyperphagic conditions plays important roles in feeding behavior and thermogenesis by modulating neuronal functions within the hypothalamus, but not in the brainstem.


Assuntos
Vias Eferentes/metabolismo , Hiperfagia/patologia , Hipotálamo/citologia , Neurônios/metabolismo , Neuropeptídeo Y/metabolismo , Obesidade/patologia , Fatores Etários , Animais , Animais Recém-Nascidos , Biotina/análogos & derivados , Doença Crônica , Dextranos , Modelos Animais de Doenças , Vias Eferentes/fisiologia , Feminino , Hormônio Liberador de Gonadotropina/metabolismo , Hormônios Hipotalâmicos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Ácido Láctico/metabolismo , Masculino , Melaninas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/metabolismo , Neuropeptídeos/metabolismo , Obesidade/etiologia , Orexinas , Fragmentos de Peptídeos/metabolismo , Hormônios Hipofisários/metabolismo , Gravidez , Ratos , Ratos Wistar , Triptofano Hidroxilase/metabolismo
9.
Mol Metab ; 2(1): 10-22, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-24024126

RESUMO

We investigated the impact of poor maternal nutrition and metabolic health on the development of islets of the nonhuman primate (NHP). Interestingly, fetal offspring of high fat diet (HFD) fed animals had normal total islet and ß cell mass; however, there was a significant reduction in α cell mass, and decreased expression of transcription factors involved in α cell differentiation. In juvenile animals all offspring maintained on a HFD during the postweaning period demonstrated increases in total islet mass, however, the control offspring displaying increased islet number, and HFD offspring displayed increased islet size. Finally, while control offspring had increases in α and ß cells, the HFD offspring had increases only in ß cell number. These studies indicate that consumption of a HFD diet during pregnancy in the NHP, independent of maternal metabolic health, causes long-term abnormalities in α cell plasticity that may contribute to chronic disease susceptibility.

10.
J Neuroendocrinol ; 23(1): 52-64, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21029216

RESUMO

Lactation results in negative energy balance in the rat leading to decreased gonadotrophin-releasing hormone (GnRH) release and anoestrus. Inhibited GnRH release may be a result of decreased stimulatory tone from neuropeptides critical for GnRH neuronal activity, such as kisspeptin (Kiss1) and neurokinin B (NKB). The present study aimed to identify neuronal projections from the colocalised population of Kiss1/NKB cells in the arcuate nucleus (ARH) using double-label immunohistochemistry to determine where this population may directly regulate GnRH neuronal activity. Additionally, the present study further examined lactation-induced changes in the Kiss1 system that could play a role in decreased GnRH release. The colocalised ARH Kiss1/NKB fibres projected primarily to the internal zone of the median eminence (ME) where they were in close proximity to GnRH fibres; however, few Kiss1/NKB fibres from the ARH were seen at the level of GnRH neurones in the preoptic area (POA). Arcuate Kiss1/NKB peptide levels were decreased during lactation consistent with previous mRNA data. Surprisingly, anteroventral periventricular (AVPV) Kiss1 peptide levels were increased, whereas Kiss1 mRNA levels were decreased during lactation, suggesting active inhibition of peptide release. These findings indicate ARH Kiss1/NKB and AVPV Kiss1 appear to be inhibited during lactation, which may contribute to decreased GnRH release and subsequent reproductive dysfunction. Furthermore, the absence of a strong ARH Kiss1/NKB projection to the POA suggests regulation of GnRH by this population occurs primarily at the ME level via local projections.


Assuntos
Núcleo Arqueado do Hipotálamo/metabolismo , Lactação , Neurocinina B/metabolismo , Neurônios/metabolismo , Proteínas/metabolismo , Animais , Núcleo Arqueado do Hipotálamo/citologia , Feminino , Imuno-Histoquímica , Hibridização In Situ , Kisspeptinas , Microscopia Confocal , Ratos , Ratos Wistar
11.
Neuroendocrinology ; 93(1): 1-8, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21079387

RESUMO

The perinatal environment plays an important role in programming many aspects of physiology and behavior including metabolism, body weight set point, energy balance regulation and predisposition to mental health-related disorders such as anxiety, depression and attention deficit hyperactivity disorder. Maternal health and nutritional status heavily influence the early environment and have a long-term impact on critical central pathways, including the melanocortinergic, serotonergic system and dopaminergic systems. Evidence from a variety of animal models including rodents and nonhuman primates indicates that exposure to maternal high-fat diet (HFD) consumption programs offspring for increased risk of adult obesity. Hyperphagia and increased preference for fatty and sugary foods are implicated as mechanisms for the increased obesity risk. The effects of maternal HFD consumption on energy expenditure are unclear, and future studies need to address the impact of perinatal HFD exposure on this important component of energy balance regulation. Recent evidence from animal models also indicates that maternal HFD consumption increases the risk of offspring developing mental health-related disorders such as anxiety. Potential mechanisms for perinatal HFD programming of neural pathways include circulating factors, such as hormones (leptin, insulin), nutrients (fatty acids, triglycerides and glucose) and inflammatory cytokines. As maternal HFD consumption and obesity are common and rapidly increasing, we speculate that future generations will be at increased risk for both metabolic and mental health disorders. Thus, it is critical that future studies identify therapeutic strategies that are effective at preventing maternal HFD-induced malprogramming.


Assuntos
Gorduras na Dieta/efeitos adversos , Ingestão de Alimentos/fisiologia , Metabolismo Energético/fisiologia , Comportamento Alimentar/fisiologia , Metabolismo/fisiologia , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Adulto , Animais , Feminino , Humanos , Transtornos Mentais/etiologia , Modelos Animais , Modelos Biológicos , Obesidade/etiologia , Obesidade/fisiopatologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Efeitos Tardios da Exposição Pré-Natal/psicologia
12.
Artigo em Inglês | MEDLINE | ID: mdl-22645510

RESUMO

Reproductive status is tightly coupled to metabolic state in females, and ovarian cycling in mammals is halted when energy output exceeds energy input, a metabolic condition known as negative energy balance. This inhibition of reproductive function during negative energy balance occurs due to suppression of gonadotropin-releasing hormone (GnRH) release in the hypothalamus. The GnRH secretagogue kisspeptin is also inhibited during negative energy balance, indicating that inhibition of reproductive neuroendocrine circuits may occur upstream of GnRH itself. Understanding the metabolic signals responsible for the inhibition of reproductive pathways has been a compelling research focus for many years. A predominant theory in the field is that the status of energy balance is conveyed to reproductive neuroendocrine circuits via the adipocyte hormone leptin. Leptin is stimulatory for GnRH release and lower levels of leptin during negative energy balance are believed to result in decreased stimulatory drive for GnRH cells. However, recent evidence found that restoring leptin to physiological levels did not restore GnRH function in three different models of negative energy balance. This suggests that although leptin may be an important permissive signal for reproductive function as indicated by many years of research, factors other than leptin must critically contribute to negative energy balance-induced reproductive inhibition. This review will focus on emerging candidates for the integration of metabolic status and reproductive function during negative energy balance.

13.
Brain Res ; 1364: 139-52, 2010 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-20727862

RESUMO

Lactation is an important physiological model of the integration of energy balance and reproduction, as it involves activation of potent appetitive neuropeptide systems coupled to a profound inhibition of pulsatile GnRH/LH secretion. There are multiple systems that contribute to the chronic hyperphagia of lactation: 1) suppression of the metabolic hormones, leptin and insulin, 2) activation of hypothalamic orexigenic neuropeptide systems NPY, AGRP, orexin (OX) and melanin concentrating hormone (MCH), 3) special induction of NPY expression in the dorsomedial hypothalamus, and 4) suppression of anorexigenic systems POMC and CART. These changes ensure adequate energy intake to meet the metabolic needs of milk production. There is significant overlap in all of the systems that regulate food intake with the regulation of GnRH, suggesting there could be several redundant factors acting to suppress GnRH/LH during lactation. In addition to an overall increase in inhibitory tone acting directly on GnRH cell bodies that is brought about by increases in orexigenic systems, there are also effects at the ARH to disrupt Kiss1/neurokinin B/dynorphin neuronal function through inhibition of Kiss1 and NKB. These changes could lead to an increase in inhibitory auto-regulation of the Kiss1 neurons and a possible disruption of pulsatile GnRH release. While the low levels of leptin and insulin contribute to the changes in ARH appetitive systems, they do not appear to contribute to the suppression of ARH Kiss1 or NKB. The inhibition of Kiss1 may be the key factor in the suppression of GnRH during lactation, although the mechanisms responsible for its inhibition are unknown.


Assuntos
Hormônio Liberador de Gonadotropina/fisiologia , Lactação/fisiologia , Leptina/fisiologia , Sistemas Neurossecretores/fisiologia , Proteínas Supressoras de Tumor/fisiologia , Animais , Comportamento Apetitivo/fisiologia , Metabolismo Energético/fisiologia , Feminino , Humanos , Hiperfagia , Hipotálamo/fisiologia , Insulina/metabolismo , Insulina/fisiologia , Kisspeptinas , Neurônios/fisiologia , Neuropeptídeos/fisiologia , Reprodução/fisiologia
14.
Brain Res ; 1350: 139-50, 2010 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-20380814

RESUMO

The Dorsomedial Nucleus of the Hypothalamus (DMH) is known to play important roles in ingestive behavior and body weight homeostasis. The DMH contains neurons expressing Neuropeptide Y (NPY) during specific physiological conditions of hyperphagia and obesity, however, the role of DMH-NPY neurons has yet to be characterized. In contrast to the DMH-NPY neurons, NPY expressing neurons have been best characterized in the Arcuate Nucleus of the Hypothalamus (ARH). The purpose of this study is to characterize the chemical phenotype of DMH-NPY neurons by comparing the gene expression profiles of NPY neurons in the DMH and ARH isolated from postnatal NPY-hrGFP mice by microarray analysis. Twenty genes were differentially expressed in the DMH-NPY neurons compared to the ARH. Among them, there were several transcriptional factors that play important roles in the regulation of energy balance. DMH-NPY neurons expressed Glutamic Acid Decarboxylase (GAD) 65 and 67, suggesting that they may be GABAergic, similar to ARH-NPY neurons. While ARH-NPY neurons expressed leptin receptor (ObRb) and displayed the activation of STAT3 in response to leptin administration, DMH-NPY neurons showed neither. These findings strongly suggest that DMH-NPY neurons could play a distinct role in the control of energy homeostasis and are differentially regulated from ARH-NPY neurons through afferent inputs and transcriptional regulators.


Assuntos
Núcleo Arqueado do Hipotálamo/metabolismo , Núcleo Hipotalâmico Dorsomedial/metabolismo , Perfilação da Expressão Gênica , Neurônios/metabolismo , Neuropeptídeo Y/metabolismo , Animais , Expressão Gênica , Glutamato Descarboxilase/genética , Glutamato Descarboxilase/metabolismo , Imuno-Histoquímica , Hibridização In Situ , Leptina/genética , Leptina/metabolismo , Camundongos , Camundongos Transgênicos , Microdissecção , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/análise , Receptores para Leptina/genética , Receptores para Leptina/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
15.
J Neurosci ; 30(10): 3826-30, 2010 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-20220017

RESUMO

Childhood obesity is associated with increased risk of behavioral/psychological disorders including depression, anxiety, poor learning, and attention deficient disorder. As the majority of women of child-bearing age are overweight or obese and consume a diet high in dietary fat, it is critical to examine the consequences of maternal overnutrition on the development of brain circuitry that regulates offspring behavior. Using a nonhuman primate model of diet-induced obesity, we found that maternal high-fat diet (HFD) consumption caused perturbations in the central serotonergic system of fetal offspring. In addition, female infants from HFD-fed mothers exhibited increased anxiety in response to threatening novel objects. These findings have important clinical implications as they demonstrate that exposure to maternal HFD consumption during gestation, independent of obesity, increases the risk of developing behavioral disorders such as anxiety.


Assuntos
Ansiedade/etiologia , Ansiedade/metabolismo , Gorduras na Dieta/administração & dosagem , Gorduras na Dieta/efeitos adversos , Fenômenos Fisiológicos da Nutrição Pré-Natal/fisiologia , Serotonina/metabolismo , Animais , Ansiedade/psicologia , Comportamento Animal/fisiologia , Feminino , Macaca , Masculino , Gravidez , Efeitos Tardios da Exposição Pré-Natal/etiologia , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Efeitos Tardios da Exposição Pré-Natal/psicologia , Serotonina/fisiologia , Serpentes , Fatores de Tempo
16.
Endocrinology ; 151(4): 1598-610, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20194730

RESUMO

Childhood obesity increases the risk of adult obesity and diabetes, suggesting that early overnutrition permanently programs altered energy and glucose homeostasis. In the present studies, we used a mouse model to investigate whether early overnutrition increases susceptibility to obesity and insulin resistance in response to a high-fat diet (HFD). Litters from Swiss Webster dams were culled to three [chronic postnatal overnutrition (CPO)] or 10 (control) pups and then weaned onto standard chow at postnatal day (P) 23. At 6 wk of age, a subset of mice was placed on HFD, and glucose and insulin tolerance were examined at 16-17 wk of age. Leptin sensitivity was determined by hypothalamic phosphorylated signal transducer and activator of transcription-3 immunoreactivity at P16 and adulthood after ip leptin. CPO mice exhibited accelerated body weight gain and hyperleptinemia during the preweaning period but only a slightly heavier body weight and normal glucose tolerance in adulthood on standard chow diet. Importantly, CPO mice exhibited significant leptin resistance in the arcuate nucleus, demonstrated by reduced activation of phospho-signal transducer and activator of transcription-3, as early as P16 and throughout life, despite normalized leptin levels. In response to HFD, CPO but not control mice displayed insulin resistance in response to an insulin tolerance test. In conclusion, CPO mice exhibited early and persistent leptin resistance in the arcuate nucleus and, in response to HFD, rapid development of obesity and insulin resistance. These studies suggest that early overnutrition can permanently alter energy homeostasis and significantly increase susceptibility to obesity and insulin resistance.


Assuntos
Núcleo Arqueado do Hipotálamo/metabolismo , Gorduras na Dieta/metabolismo , Leptina/metabolismo , Hipernutrição/metabolismo , Fator de Transcrição STAT3/metabolismo , Fatores Etários , Análise de Variância , Animais , Animais Recém-Nascidos , Núcleo Arqueado do Hipotálamo/efeitos dos fármacos , Área Sob a Curva , Glicemia , Peso Corporal/genética , Ingestão de Alimentos/fisiologia , Metabolismo Energético/fisiologia , Teste de Tolerância a Glucose , Imuno-Histoquímica , Insulina/metabolismo , Resistência à Insulina/genética , Leptina/farmacologia , Camundongos , Atividade Motora/fisiologia , Hipernutrição/genética , Fosforilação/fisiologia , Radioimunoensaio , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Transcrição STAT3/genética
17.
Endocrinology ; 150(9): 4231-40, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19470705

RESUMO

Negative energy balance during lactation is reflected by low levels of insulin and leptin and is associated with chronic hyperphagia and suppressed GnRH/LH activity. We studied whether restoration of insulin and/or leptin to physiological levels would reverse the lactation-associated hyperphagia, changes in hypothalamic neuropeptide expression [increased neuropeptide Y (NPY) and agouti-related protein (AGRP) and decreased proopiomelanocortin (POMC), kisspeptin (Kiss1), and neurokinin B (NKB)] and suppression of LH. Ovariectomized lactating rats (eight pups) were treated for 48 h with sc minipumps containing saline, human insulin, or rat leptin. The arcuate nucleus (ARH) was analyzed for NPY, AGRP, POMC, Kiss1, and NKB mRNA expression; the dorsal medial hypothalamus (DMH) was analyzed for NPY mRNA. Insulin replacement reversed the increase in ARH NPY/AGRP mRNAs, partially recovered POMC, but had no effect on recovering Kiss1/NKB. Leptin replacement only affected POMC, which was fully recovered. Insulin/leptin dual replacement had similar effects as insulin replacement alone but with a slight increase in Kiss1/NKB. The lactation-induced increase in DMH NPY was unchanged after treatments. Restoration of insulin and/or leptin had no effect on food intake, body weight, serum glucose or serum LH. These results suggest that the negative energy balance of lactation is not required for the hyperphagic drive, although it is involved in the orexigenic changes in the ARH. The chronic hyperphagia of lactation is most likely sustained by the induction of NPY in the DMH. The negative energy balance also does not appear to be a necessary prerequisite for the suppression of GnRH/LH activity.


Assuntos
Insulina/fisiologia , Lactação/fisiologia , Leptina/fisiologia , Animais , Glicemia/metabolismo , Ingestão de Alimentos , Feminino , Hormônio Liberador de Gonadotropina/metabolismo , Humanos , Insulina/sangue , Lactação/efeitos dos fármacos , Leptina/sangue , Hormônio Luteinizante/metabolismo , Ratos , Ratos Wistar
18.
J Clin Invest ; 119(2): 323-35, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19147984

RESUMO

Maternal obesity is thought to increase the offspring's risk of juvenile obesity and metabolic diseases; however, the mechanism(s) whereby excess maternal nutrition affects fetal development remain poorly understood. Here, we investigated in nonhuman primates the effect of chronic high-fat diet (HFD) on the development of fetal metabolic systems. We found that fetal offspring from both lean and obese mothers chronically consuming a HFD had a 3-fold increase in liver triglycerides (TGs). In addition, fetal offspring from HFD-fed mothers (O-HFD) showed increased evidence of hepatic oxidative stress early in the third trimester, consistent with the development of nonalcoholic fatty liver disease (NAFLD). O-HFD animals also exhibited elevated hepatic expression of gluconeogenic enzymes and transcription factors. Furthermore, fetal glycerol levels were 2-fold higher in O-HFD animals than in control fetal offspring and correlated with maternal levels. The increased fetal hepatic TG levels persisted at P180, concurrent with a 2-fold increase in percent body fat. Importantly, reversing the maternal HFD to a low-fat diet during a subsequent pregnancy improved fetal hepatic TG levels and partially normalized gluconeogenic enzyme expression, without changing maternal body weight. These results suggest that a developing fetus is highly vulnerable to excess lipids, independent of maternal diabetes and/or obesity, and that exposure to this may increase the risk of pediatric NAFLD.


Assuntos
Gorduras na Dieta/efeitos adversos , Fígado Gorduroso/etiologia , Feto/metabolismo , Fígado/metabolismo , Animais , Citocinas/sangue , Feminino , Desenvolvimento Fetal , Gluconeogênese , Teste de Tolerância a Glucose , Resistência à Insulina , Leptina/sangue , Macaca , Masculino , Fenômenos Fisiológicos da Nutrição Materna , Obesidade/complicações , Estresse Oxidativo , Gravidez , Triglicerídeos/metabolismo
19.
Endocrinology ; 150(1): 333-40, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18719019

RESUMO

Increased neuropeptide Y (NPY) activity drives the chronic hyperphagia of lactation and may contribute to the suppression of GnRH activity. The majority of GnRH neurons are contacted by NPY fibers, and GnRH cells express NPY Y5 receptor (Y5R). Therefore, NPY provides a neurocircuitry for information about food intake/energy balance to be directly transmitted to GnRH neurons. To investigate the effects of lactation on GnRH neuronal activity, hypothalamic slices were prepared from green fluorescent protein-GnRH transgenic rats. Extracellular loose-patch recordings determined basal GnRH neuronal activity from slices of ovariectomized control and lactating rats. Compared with controls, hypothalamic slices from lactating rats had double the number of quiescent GnRH neurons (14.51 +/- 2.86 vs. 7.04 +/- 2.84%) and significantly lower firing rates of active GnRH neurons (0.25 +/- 0.02 vs. 0.37 +/- 0.03 Hz). To study the NPY-postsynaptic Y5R system, whole-cell current-clamp recordings were performed in hypothalamic slices from control rats to examine NPY/Y5R antagonist effects on GnRH neuronal resting membrane potential. Under tetrodotoxin treatment, NPY hyperpolarized GnRH neurons from -56.7 +/- 1.94 to -62.1 +/- 1.83 mV; NPY's effects were blocked by Y5R antagonist. To determine whether increased endogenous NPY tone contributes to GnRH neuronal suppression during lactation, hypothalamic slices were treated with Y5R antagonist. A significantly greater percentage of GnRH cells were activated in slices from lactating rats (52%) compared with controls (28%). These results suggest that: 1) basal GnRH neuronal activity is suppressed during lactation; 2) NPY can hyperpolarize GnRH neurons via postsynaptic Y5R; and 3) increased inhibitory NPY tone during lactation is a component of the mechanisms responsible for suppression of GnRH neuronal activity.


Assuntos
Encéfalo/fisiologia , Hormônio Liberador de Gonadotropina/antagonistas & inibidores , Lactação/fisiologia , Neuropeptídeo Y/farmacologia , Animais , Animais Geneticamente Modificados , Encéfalo/efeitos dos fármacos , Eletrofisiologia , Feminino , Genes Reporter , Proteínas de Fluorescência Verde/genética , Modelos Neurológicos , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Ratos , Ratos Wistar
20.
J Comp Neurol ; 506(2): 194-210, 2008 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-18022952

RESUMO

Peptide YY (PYY), a member of the NPY superfamily of peptides, is predominantly synthesized by the colon and is thought to act on both the gut and brain to modulate energy homeostasis. Although neurons expressing PYY mRNA have also been reported in the brainstem, little is known about their physiological role and study of their projections has been problematic due to crossreactivity of PYY antibodies with NPY. In the present study we examined the localization of central PYY cell bodies in the mouse, rat, and monkey. In addition, efferent projections and afferent inputs of central PYY neurons were examined in rodents. Central PYY projections were examined by immunohistochemistry in the NPY knockout mouse, or with an NPY-preabsorbed PYY antibody in the rat to avoid any crossreactivity with NPY. In all species investigated PYY-immunoreactive (ir) cell bodies were localized exclusively to the gigantocellular reticular nucleus (Gi) of the rostral medulla. The highest density of PYY fibers was present within the solitary tract nucleus, specifically within the dorsal and lateral aspects. PYY fibers were also concentrated within the dorsal motor nucleus of the vagus and the hypoglossal nucleus. In addition, both orexin and melanin-concentrating hormone fibers made numerous close appositions with PYY cell bodies in the Gi. Collectively, the projection pattern and association with orexigenic neuropeptides suggest that brainstem PYY neurons may play a role in energy homeostasis through a coordinated effect on visceral, motor, and sympathetic output targets.


Assuntos
Tronco Encefálico/citologia , Neurônios/metabolismo , Peptídeo YY/metabolismo , Animais , Tronco Encefálico/metabolismo , Hormônios Hipotalâmicos/metabolismo , Hibridização In Situ/métodos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Macaca fascicularis , Masculino , Melaninas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Vias Neurais/metabolismo , Neurônios/citologia , Neuropeptídeo Y/metabolismo , Neuropeptídeos/metabolismo , Orexinas , Peptídeo YY/genética , Hormônios Hipofisários/metabolismo , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA