Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 144(18): 8054-8065, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35499923

RESUMO

N6-(2-Deoxy-α,ß-d-erythro-pentofuranosyl)-2,6-diamino-4-hydroxy-5-formamido pyrimidine (Fapy•dG) is a prevalent form of genomic DNA damage. Fapy•dG is formed in greater amounts under anoxic conditions than the well-studied, chemically related 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-oxodGuo). Fapy•dG is more mutagenic in mammalian cells than 8-oxodGuo. A distinctive property of Fapy•dG is facile epimerization, but prior works with Fapy•dG analogues have precluded determining its effect on chemistry. We present crystallographic characterization of natural Fapy•dG in duplex DNA and as the template base for DNA polymerase ß (Pol ß). Fapy•dG adopts the ß-anomer when base paired with cytosine but exists as a mixture of α- and ß-anomers when promutagenically base paired with adenine. Rotation about the bond between the glycosidic nitrogen atom and the pyrimidine ring is also affected by the opposing nucleotide. Sodium cyanoborohydride soaking experiments trap the ring-opened Fapy•dG, demonstrating that ring opening and epimerization occur in the crystalline state. Ring opening and epimerization are facilitated by propitious water molecules that are observed in the structures. Determination of Fapy•dG mutagenicity in wild type and Pol ß knockdown HEK 293T cells indicates that Pol ß contributes to G → T transversions but also suppresses G → A transitions. Complementary kinetic studies have determined that Fapy•dG promotes mutagenesis by decreasing the catalytic efficiency of dCMP insertion opposite Fapy•dG, thus reducing polymerase fidelity. Kinetic studies have determined that dCMP incorporation opposite the ß-anomer is ∼90 times faster than the α-anomer. This research identifies the importance of anomer dynamics, a feature unique to formamidopyrimidines, when considering the incorporation of nucleotides opposite Fapy•dG and potentially the repair of this structurally unusual lesion.


Assuntos
Desoxicitidina Monofosfato , Mutagênicos , 8-Hidroxi-2'-Desoxiguanosina , Animais , DNA/química , Adutos de DNA , Dano ao DNA , Replicação do DNA , Desoxicitidina Monofosfato/metabolismo , Desoxiguanosina , Cinética , Mamíferos/genética , Mamíferos/metabolismo , Mutagênese , Mutagênicos/química , Estresse Oxidativo , Pirimidinas/química
2.
Front Mol Biosci ; 8: 778400, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34805283

RESUMO

Y-family DNA polymerases (pols) consist of six phylogenetically separate subfamilies; two UmuC (polV) branches, DinB (pol IV, Dpo4, polκ), Rad30A/POLH (polη), and Rad30B/POLI (polι) and Rev1. Of these subfamilies, DinB orthologs are found in all three domains of life; eubacteria, archaea, and eukarya. UmuC orthologs are identified only in bacteria, whilst Rev1 and Rad30A/B orthologs are only detected in eukaryotes. Within eukaryotes, a wide array of evolutionary diversity exists. Humans possess all four Y-family pols (pols η, ι, κ, and Rev1), Schizosaccharomyces pombe has three Y-family pols (pols η, κ, and Rev1), and Saccharomyces cerevisiae only has polη and Rev1. Here, we report the cloning, expression, and biochemical characterization of the four Y-family pols from the lower eukaryotic thermophilic fungi, Thermomyces lanuginosus. Apart from the expected increased thermostability of the T. lanuginosus Y-family pols, their major biochemical properties are very similar to properties of their human counterparts. In particular, both Rad30B homologs (T. lanuginosus and human polÉ©) exhibit remarkably low fidelity during DNA synthesis that is template sequence dependent. It was previously hypothesized that higher organisms had acquired this property during eukaryotic evolution, but these observations imply that polι originated earlier than previously known, suggesting a critical cellular function in both lower and higher eukaryotes.

4.
J Biol Chem ; 295(6): 1613-1622, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-31892517

RESUMO

During oxidative stress, inflammation, or environmental exposure, ribo- and deoxyribonucleotides are oxidatively modified. 8-Oxo-7,8-dihydro-2'-guanosine (8-oxo-G) is a common oxidized nucleobase whose deoxyribonucleotide form, 8-oxo-dGTP, has been widely studied and demonstrated to be a mutagenic substrate for DNA polymerases. Guanine ribonucleotides are analogously oxidized to r8-oxo-GTP, which can constitute up to 5% of the rGTP pool. Because ribonucleotides are commonly misinserted into DNA, and 8-oxo-G causes replication errors, we were motivated to investigate how the oxidized ribonucleotide is utilized by DNA polymerases. To do this, here we employed human DNA polymerase ß (pol ß) and characterized r8-oxo-GTP insertion with DNA substrates containing either a templating cytosine (nonmutagenic) or adenine (mutagenic). Our results show that pol ß has a diminished catalytic efficiency for r8-oxo-GTP compared with canonical deoxyribonucleotides but that r8-oxo-GTP is inserted mutagenically at a rate similar to those of other common DNA replication errors (i.e. ribonucleotide and mismatch insertions). Using FRET assays to monitor conformational changes of pol ß with r8-oxo-GTP, we demonstrate impaired pol ß closure that correlates with a reduced insertion efficiency. X-ray crystallographic analyses revealed that, similar to 8-oxo-dGTP, r8-oxo-GTP adopts an anti conformation opposite a templating cytosine and a syn conformation opposite adenine. However, unlike 8-oxo-dGTP, r8-oxo-GTP did not form a planar base pair with either templating base. These results suggest that r8-oxo-GTP is a potential mutagenic substrate for DNA polymerases and provide structural insights into how r8-oxo-GTP is processed by DNA polymerases.


Assuntos
DNA Polimerase beta/metabolismo , DNA/metabolismo , Nucleotídeos de Desoxiguanina/metabolismo , Ribonucleotídeos/metabolismo , DNA/química , Nucleotídeos de Desoxiguanina/química , Humanos , Simulação de Acoplamento Molecular , Oxirredução , Estresse Oxidativo , Ribonucleotídeos/química
5.
Cell Mol Life Sci ; 77(1): 35-59, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31722068

RESUMO

DNA polymerases are vital for the synthesis of new DNA strands. Since the discovery of DNA polymerase I in Escherichia coli, a diverse library of mammalian DNA polymerases involved in DNA replication, DNA repair, antibody generation, and cell checkpoint signaling has emerged. While the unique functions of these DNA polymerases are differentiated by their association with accessory factors and/or the presence of distinctive catalytic domains, atomic resolution structures of DNA polymerases in complex with their DNA substrates have revealed mechanistic subtleties that contribute to their specialization. In this review, the structure and function of all 15 mammalian DNA polymerases from families B, Y, X, and A will be reviewed and discussed with special emphasis on the insights gleaned from recently published atomic resolution structures.


Assuntos
DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/metabolismo , Animais , Domínio Catalítico , Reparo do DNA , Replicação do DNA , Humanos , Modelos Moleculares , Conformação Proteica
6.
Nucleic Acids Res ; 47(6): 3197-3207, 2019 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-30649431

RESUMO

4,6-Diamino-5-formamidopyrimidine (Fapy•dG) is an abundant form of oxidative DNA damage that is mutagenic and contributes to the pathogenesis of human disease. When Fapy•dG is in its nucleotide triphosphate form, Fapy•dGTP, it is inefficiently cleansed from the nucleotide pool by the responsible enzyme in Escherichia coli MutT and its mammalian homolog MTH1. Therefore, under oxidative stress conditions, Fapy•dGTP could become a pro-mutagenic substrate for insertion into the genome by DNA polymerases. Here, we evaluated insertion kinetics and high-resolution ternary complex crystal structures of a configurationally stable Fapy•dGTP analog, ß-C-Fapy•dGTP, with DNA polymerase ß. The crystallographic snapshots and kinetic data indicate that binding of ß-C-Fapy•dGTP impedes enzyme closure, thus hindering insertion. The structures reveal that an active site residue, Asp276, positions ß-C-Fapy•dGTP so that it distorts the geometry of critical catalytic atoms. Removal of this guardian side chain permits enzyme closure and increases the efficiency of ß-C-Fapy•dG insertion opposite dC. These results highlight the stringent requirements necessary to achieve a closed DNA polymerase active site poised for efficient nucleotide incorporation and illustrate how DNA polymerase ß has evolved to hinder Fapy•dGTP insertion.


Assuntos
DNA Polimerase beta/química , Nucleotídeos de Desoxiguanina/química , Estresse Oxidativo/efeitos dos fármacos , Conformação Proteica , Domínio Catalítico/genética , Cristalografia por Raios X , Dano ao DNA/genética , DNA Polimerase beta/genética , Replicação do DNA/genética , Nucleotídeos de Desoxiguanina/genética , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/química , Humanos , Cinética , Mutagênese/efeitos dos fármacos , Pirofosfatases/química
7.
Chem Res Toxicol ; 30(11): 1993-2001, 2017 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-28862449

RESUMO

Members of the nucleoside analogue class of cancer therapeutics compete with canonical nucleotides to disrupt numerous cellular processes, including nucleotide homeostasis, DNA and RNA synthesis, and nucleotide metabolism. Nucleoside analogues are triphosphorylated and subsequently inserted into genomic DNA, contributing to the efficacy of therapeutic nucleosides in multiple ways. In some cases, the altered base acts as a mutagen, altering the DNA sequence to promote cellular death; in others, insertion of the altered nucleotide triggers DNA repair pathways, which produce lethal levels of cytotoxic intermediates such as single and double stranded DNA breaks. As a prerequisite to many of these biological outcomes, the modified nucleotide must be accommodated in the DNA polymerase active site during nucleotide insertion. Currently, the molecular contacts that mediate DNA polymerase insertion of modified nucleotides remain unknown for multiple therapeutic compounds, despite decades of clinical use. To determine how modified bases are inserted into duplex DNA, we used mammalian DNA polymerase ß (pol ß) to visualize the structural conformations of four therapeutically relevant modified nucleotides, 6-thio-2'-deoxyguanosine-5'-triphosphate (6-TdGTP), 5-fluoro-2'-deoxyuridine-5'-triphosphate (5-FdUTP), 5-formyl-deoxycytosine-5'-triphosphate (5-FodCTP), and 5-formyl-deoxyuridine-5'-triphosphate (5-FodUTP). Together, the structures reveal a pattern in which the modified nucleotides utilize Watson-Crick base pairing interactions similar to that of unmodified nucleotides. The nucleotide modifications were consistently positioned in the major groove of duplex DNA, accommodated by an open cavity in pol ß. These results provide novel information for the rational design of new therapeutic nucleoside analogues and a greater understanding of how modified nucleotides are tolerated by polymerases.


Assuntos
DNA Polimerase beta/química , DNA/química , Nucleotídeos de Desoxicitosina/química , Nucleotídeos de Desoxiuracil/química , Guanosina Trifosfato/análogos & derivados , Pareamento de Bases , Sítios de Ligação , Cristalografia por Raios X , DNA/metabolismo , DNA Polimerase beta/metabolismo , Nucleotídeos de Desoxicitosina/metabolismo , Nucleotídeos de Desoxiuracil/metabolismo , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Humanos , Modelos Moleculares , Conformação Molecular , Conformação de Ácido Nucleico
8.
Nucleic Acids Res ; 45(11): 6934-6944, 2017 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-28449123

RESUMO

The oxidized nucleotide, 8-oxo-7,8-dihydro-2΄-deoxyguanosine (8-oxoG), is one of the most abundant DNA lesions. 8-oxoG plays a major role in tumorigenesis and human disease. Biological consequences of 8-oxoG are mediated in part by its insertion into the genome, making it essential to understand how DNA polymerases handle 8-oxoG. Insertion of 8-oxoG is mutagenic when opposite adenine but not when opposite cytosine. However, either result leads to DNA damage at the primer terminus (3΄-end) during the succeeding insertion event. Extension from DNA damage at primer termini remains poorly understood. Using kinetics and time-lapse crystallography, we evaluated how a model DNA polymerase, human polymerase ß, accommodates 8-oxoG at the primer terminus opposite cytosine and adenine. Notably, extension from the mutagenic base pair is favored over the non-mutagenic base pair. When 8-oxoG is at the primer terminus opposite cytosine, DNA centric changes lead to a clash between O8 of 8-oxoG and the phosphate backbone. Changes in the extension reaction resulting from the altered active site provide evidence for a stabilizing interaction between Arg254 and Asp256 that serves an important role during DNA synthesis reactions. These results provide novel insights into the impact of damage at the primer terminus on genomic stability and DNA synthesis.


Assuntos
DNA Polimerase beta/química , Desoxiguanosina/análogos & derivados , 8-Hidroxi-2'-Desoxiguanosina , Biocatálise , Cálcio/química , Domínio Catalítico , Cristalografia por Raios X , DNA Polimerase beta/isolamento & purificação , Desoxiguanosina/química , Humanos , Cinética , Modelos Moleculares , Oxirredução , Polimerização , Ligação Proteica , Conformação Proteica em alfa-Hélice
9.
Front Biosci (Landmark Ed) ; 22(9): 1493-1522, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28199214

RESUMO

Reactive oxygen species continuously assault the structure of DNA resulting in oxidation and fragmentation of the nucleobases. Both oxidative DNA damage itself and its repair mediate the progression of many prevalent human maladies. The major pathway tasked with removal of oxidative DNA damage, and hence maintaining genomic integrity, is base excision repair (BER). The aphorism that structure often dictates function has proven true, as numerous recent structural biology studies have aided in clarifying the molecular mechanisms used by key BER enzymes during the repair of damaged DNA. This review focuses on the mechanistic details of the individual BER enzymes and the association of these enzymes during the development and progression of human diseases, including cancer and neurological diseases. Expanding on these structural and biochemical studies to further clarify still elusive BER mechanisms, and focusing our efforts toward gaining an improved appreciation of how these enzymes form co-complexes to facilitate DNA repair is a crucial next step toward understanding how BER contributes to human maladies and how it can be manipulated to alter patient outcomes.


Assuntos
Dano ao DNA , Reparo do DNA , Animais , DNA/química , DNA/metabolismo , DNA Glicosilases/química , DNA Glicosilases/genética , DNA Glicosilases/metabolismo , DNA Polimerase beta/química , DNA Polimerase beta/genética , DNA Polimerase beta/metabolismo , Técnicas de Inativação de Genes , Humanos , Camundongos , Modelos Moleculares , Mutação , Neoplasias/genética , Neoplasias/metabolismo , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/metabolismo , Oxirredução , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA